

IOT - 103

IoT Trends: Embedded ML in Your Edge Devices

ΙΘ̈́Τ

Tamas Daranyi | August 2023

Embedded ML - TinyML

- Intelligence is moving down to the 'edge' to keep processing as close as possible to the source of data
- Edge AI refers to any device with the capabilities to process AI workload
- **Tiny Edge** sensor class devices or small application processors, typically Cortex M class (M33, M4 or equivalent/below) run TinyML applications
- **TinyML Characteristics:**
 - Ultra-low power applications and systems (<mW range)
 - Decent inference speed but more focused on efficiency
 - Algorithms, networks, and models down to < hundreds of kB
 - Efficient ML accelerators
 - Low cost, optimized, well integrated systems

An Emerging Market – Significant Growth YoY

TinyML Device Shipment to Exceed 4 Billion by 2028, 10+ Billion by 2030

Source: ABI Research, 2023

Why Machine Learning on Embedded Devices?

Low Latency Required

- Mission or safety-critical applications require realtime reactions
- Large data to process typically at vision use cases - no time to upload to anywhere to process

Privacy and IP Protection, Security

- Data never leaves the sensing device, only inference result/metadata is transferred
- Less sensitive data to transmit, less chance to be hacked
- Protecting IP

Bandwidth Constraints

- Long range, low power, and slow networks can't transfer all Time Series data to process somewhere else
- Overloading of mesh network is an issue
- Large data to chunk e.g. hi-res images

Offline Mode Operation

- Local system keeps operating standalone in case of any network issue
- Connectivity is occasional or blocked by admin

Cost Reduction

- Network and infrastructure costs
- Data ingestion costs
- Data storage costs
- Cloud services
- Ops, maintenance
- Compact edge with ML solutions integrated to wireless SoC
- Cheaper devices

Power constraints

- Ultra-low power applications
- Always-on systems
- Healthy tradeoff in transmit to higher level compute vs. locally process

Embedded ML Trends

NEW APPLICATIONS

TinyML opened new horizons in embedded application space (MCU class devices)

- → Advanced data processing
 - → Audio Voice detection
 - → Vision

EFFICIENCY

Ultra low-power applications
Strong requirements on battery life

- → Always-on System Topology
- → HW Accelerated Machine Learning

SIMPLIFICATION

Reducing system complexity and cost

Compact size is a must (e.g. wearables)

- → Application chip and radio modem into one combined solution
- → Multi-radio, multi-protocol wireless in one single SoC
 - → ML in sensor class devices

Check AIML – 101: Ensure First
Time Success of Edge ML
Applications

SensiML[®]

TIME TO MARKET

IOT market is growing. Strong competition among ODMs. Having market differentiation is key.

- → Rising of turnkey solution providers in ML space
 - → More and more integrated ML toolchains and growing ecosystems
 - → Tools to Vertical solutions

Industry's Answers for the TinyML Space Growth

Standardized Performance Benchmarks

System Integrators and Design Houses

Vertical Specific Turnkey Solutions

End to End ML Development Tools for Embedded space, MLOps

Dataset as 'the new source', synthetic dataset generation

Evolution of ML Training Frameworks, Networks

Further HW Utilization Optimization, ML Runtimes, Compilers

System Level HW Optimization, Front End solutions

'Smart' Hardware targeting dedicated ML Use Cases

AI/ML on Silicon Labs' Wireless SoCs

EFR32 Series 2 and Wi-Fi SoCs

Higher Performance Platform

- ARM Cortex M33 (78 MHz)
- Improved radio performance
- Lower power (MCU active, TX/RX)

Improved Security

- Secure Vault Mid
- Secure Vault High (select OPNs)

Acceleration - MVP

- AI/ML acceleration
- Faster AoA/AoD calculation
- Math library (matrix and vector ops)

Al Software

- TensorFlow Lite for Microcontrollers with accelerated kernels in GSDK
- 3rd Party end-to-end tools

All Series 2 SoCs support ML

78MHz CortexM33 AI/ML accelerator 1.5MB / 256kB 2.4 GHz radio 20 dBm TX Power Secure Vault Low power

180MHz CortexM4

Wi 🖪 6

EFR32FG28:

Launch this month!

- 9-axis Inertial Sensor
- 2 Digital Microphones
- PIR sensor
- Pressure Sensor
- Relative Humidity and Temperature
- UV and Ambient Light Sensor
- Hall-effect Sensor

Ready to demonstrate ML

- Sample applications in GSDK
- Examples on GitHub
- Examples and tutorials in MLTK
- Many sample applications and demos from partners
- Plug&Play Sensor extensions with Sparkfun Qwiic connector

Common Machine Learning software and tools on our Wireless SoC portfolio

Benefits of the MVP Hardware Accelerator

- Dedicated ML computing subsystem next to the CPU: Matrix Vector Processor (MVP)
- Optimized MVP to accelerate ML inferencing with a lot of processing power offloading the CPU
- Up to 8x faster inferencing over Cortex-M
- Up to 6x lower power for inferencing

Performance data with ML hardware accelerator vs. pure SW on CortexM*

^{*}Standardized performance benchmark validated by independent benchmarking body **MLCommons.org**. Published in MLPerf Tiny v1.0. Results are for inferencing only (not for the complete application).

'Always-on' System Topology

Frequent wake-up of application CPU

Application CPU can sleep more

Always-On Audio

Wake Word Detection

- Sensory's ML Wake-word detection optimized for always-on system topology
- Analog / digital mic, Audio Front-end
- EFR32MG24 Wireless SoC on xG24 DevKit
- Plug and play demo with Sensory VoiceHub available on Silicon Labs's GitHub

sensory

- Smart Lock with voice id authentication and activity detection on xG24_DK2601B; Lock opens only for the dedicated person, ignores everyone else
- Analog / Digital mic with AFE
- TFLite micro ML application, Leveraging internal accelerator
- Check SensiML & Silicon Labs voice ID demo video post from EmbeddedWorld23

Various ML Applications from partner AIZIP

- AIZIP is a ML solution provider offering wide range of deep neural networks (DNN) with superior performance, running on EFR32 parts
- Turnkey Glass Break solution on MG24 available

Customer case study: Smart Circuit Breaker with anomaly detection

- Wireless smart circuit breaker
- Continuous monitoring of voltage and current signal and predict safety critical events to act earlier than with traditional method (e.g. arc fault detection)
- Speed and accuracy is important below 4 msec response time acceleration is a must have
- All in one wireless SoC

Predictive Maintenance & Condition Monitoring Applications

DATA PROCESSING

Cloud / OnPrem

Gateway

Industries

- Chemical and Petroleum refinement
- Water filtration
- Pulp & Paper processing
- Power Plants
- Manufacturing & Warehousing
- Rail, Shipping & Logistics
- Construction & Farming vehicles
- HVAC & Refrigeration

Applications

- Motor & electrical drives
- Factory machinery/tool vibration
- Valves and pressure sensors and pumps
- Noise detection from bearings
- Heat measurement of lubricant/fluids

Machine

Predictive Maintenance & Condition Monitoring Applications

Sign up for other WorksWith sessions to learn more about the topic!

AIML-102: Machine Health and Condition Monitoring using Edge Impulse

AIML-103: Machine Learning Techniques for Predictive Maintenance

Cloud / OnPrem

Gateway

Machine

Sensor

DATA PROCESSING

Ultra low footprint IMU use cases by partner NeutonAl

Teeth-brushing Tracking Solution

- The solution can identify which specific area of your oral cavity was being cleaned
- Classes: 11
- Accuracy: >97%
- Inference Time: <2 ms
 Total footprint: ~4,5 KB

Box Shipment Tracking Solution

- Recognizes the following box states: moving, stationary, impacted, thrown, picked, placed in the wrong position and unknown class.
- Accuracy: >96,3 %Inference Time: <1 ms
- Total footprint: ~3 KB

Gesture Recognition Control for Smart Watch

- Allows to control a watch by recognizing the following gestures: pinch, double pinch, clench, double clench and unknown class.
- Accuracy: >97,6 %
- Inference Time: <1 ms
- Total footprint: ~3,24 KB

ML Vision: IR camera product by partner AITAD

- Certified solution partner
- Use case: Al based wireless IR-person detection for showers on EFR32MG24
 - Reasonable price
 - Wireless, self-sufficient and powerful
 - Unique AITAD embedded AI process
 - Low power and low-resolution IR sensor Scalability (from 8x8 to higher pixels / angels)

Safety Fall detection use case, Mounted on the ceiling

& Won National Innovation Award in Germany

New Sample Application: People-flow counting

- Machine Learning based People counting app available on Silicon Labs GitHub
- Bi-directional people flow counting
- Without any privacy issues
- Real time operation with BLE interface to the PC
- HW accelerated TF Lite Micro ML algorithm

Name: people_flow_counter

Accelerator: MVP

Input Shape: 1x24x32x1
Input Data Type: float32
Output Shape: 1x12x16x6
Output Data Type: float32

Flash, Model File Size: 26.5kB RAM, Runtime Memory Size: 66.6kB

Operation Count: 3.5M

Multiply-Accumulate Count: 1.7M

Layer Count: 23

Unsupported Layer Count: 0
Accelerator Cycle Count: 1.0M

CPU Cycle Count: 433.3k CPU Utilization: 32.5% Clock Rate: 78.0MHz Energy: 416.6 uJ J/Op: 118.5p J/MAC: 245.0p

InferenceTime: 17.1msec

Ops/s: 205.7M MACs/s: 99.5M Inference/s: 58.5

Learn more about TinyML

- WorksWith '23
 - AIML-101: Ensure First Time Success of Edge ML Applications
 - AIML-102: Machine Health and Condition Monitoring using Edge Impulse
 - AIML-103: Machine Learning Techniques for Predictive Maintenance
 - AIML-201: ML Development Tools & Building and Voice Application
- www.silabs.com/AI-ML
- Silicon Labs's tech talks, webinars
- TinyML Foundation
 - Live Events
 - Online forums
 - YouTube Webinars

IOT - 103

Thank you!

