SILICON LABS

AN1133: Dynamic Multiprotocol Development
with Bluetooth® and Zigbee EmberZNet SDK
6.x and Lower

This application note provides details on developing Dynamic
Multiprotocol applications using Bluetooth and Zigbee. It describes
how to configure applications in Simplicity Studio using the Zigbee « Generating and loading dynamic multi-
EmberZNet SDK. It then provides a detailed walkthrough on how protocol example applications.
the underlying code functions. For details on Dynamic | * el &yaame meipiotocol functional
Multiprotocol Application development that apply to all protocol « Details on the application User Interface.
combinations see UG305: Dynamic Multiprotocol User’s Guide. « How the Zigbee example applications
function.

KEY POINTS

This document applies to Zigbee EmberZNet SDK 6.10.x and lower. Zigbee EmberZNet
SDK 7 contains significant changes compared to earlier SDKs. Many of these changes
are due to an underlying framework redesign that results in an improved developer ex-
perience within Simplicity Studio 5. Projects are now built on a component architecture
instead of AppBuilder. Simplicity Studio 5 includes project configuration tools that provide
an enhanced level of software component discoverability, configurability, and depend-
ency management. See AN1322: Dynamic Multiprotocol Development with Bluetooth and
Zigbee EmberZNet 7.0 and Higher if you are using or planning to use that version.

* How the Bluetooth application functions.

silabs.com | Building a more connected world. Copyright © 2021 by Silicon Laboratories

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
Introduction

1 Introduction

The example applications referenced here can be controlled either from a protocol-specific switch application or from a Bluetooth-enabled
smartphone app. This application note provides details on how these examples are designed and implemented. It also describes how to
generate, compile, and load example application code, and how to add dynamic multiprotocol functionality to an existing Zigbee project.
The application note is intended to be used when developing your own Zigbee/Bluetooth dynamic multiprotocol implementations.

Note: The Zigbee dynamic multiprotocol solution is currently only supported for SoC architectures. Support for NCP architectures is not
yet available. Please contact Silicon Labs Sales for more information on our multiprotocol software roadmap.

1.1 Resources

e UG305: Dynamic Multiprotocol User's Guide provides details on:

e Dynamic Multiprotocol Architecture
e Radio Scheduler operation (with examples)
e Task Priority management

e AN1135: Using Third Generation Non-Volatile Memory (NVM3) Data Storage explains how NVM3 can be used as non-volatile data
storage in Dynamic Multiprotocol applications with Zigbee and Bluetooth.

Note: EmberZNet SDK 6.8.0.0 was released as part of Gecko SDK Suite 3.0.0.0 (GSDK v3.x) and is used with Bluetooth SDK v3.x
and Simplicity Studio 5. EmberZNet SDK 6.7.x continues to be used with Bluetooth 2.13.x and Simplicity Studio 4. Because of
changes to the Bluetooth SDK v3.x, a few instructions and examples in this document vary based on version. Both variants are
included and are clearly noted in the text.

1.2 Development Environment Requirements

EmberZNet 6.7.x

e Simplicity Studio 4

e EmberZNet SDK version 6.4.0 or higher

e Bluetooth SDK version 2.10.0 or higher

e Micrium OS-5 kernel version 5.3. or higher (installed automatically with EmberZNet SDK in Simplicity Studio 4)

e An EFR32 chip with at least 512 kB of flash (required to run all the necessary software components)

¢ |AR Embedded Workbench for ARM (IAR-EWARM) version compatible with your SDK (see the release notes for version details).

EmberZNet 6.8.x and higher

e Simplicity Studio 5

e EmberZNet SDK version 6.8.0 or higher

e Bluetooth SDK version 3.0.0 or higher

e Micrium OS kernel version 6.0.0 or higher (installed automatically with EmberZNet SDK in Simplicity Studio)

e An EFR32 chip with at least 512 kB of flash (required to run all the necessary software components)

¢ |AR Embedded Workbench for ARM (IAR-EWARM) version compatible with your SDK (see the release notes for version details).

silabs.com | Building a more connected world.

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
Working with the Zigbee/Bluetooth Examples

2 Working with the Zigbee/Bluetooth Examples

This section describes
e How to build and flash the dynamic multiprotocol applications supplied with the EmberZNet SDK.
e How to configure a Zigbee project into a dynamic multiprotocol project.

21 Application Generation

To work with Zigbee/Bluetooth dynamic multiprotocol applications you must install both the EmberZNet SDK and the Bluetooth SDK. The
Micrium kernel is installed along with the EmberZNet SDK. IAR Embedded Workbench for ARM (IAR-EWARM) 8.30 must be installed
and used as your compiler. See QSG106: Getting Started with EmberZNet PRO for information on installing the SDKs and IAR-EWARM.

Dynamic multiprotocol applications are generated, built, and uploaded in the same way as other applications. If you are not familiar with
these procedures, see QSG106: Getting Started with EmberZNet PRO for details. The dynamic multiprotocol applications included with
the EmberZNet SDK are:

o DynamicMultiprotocolLight is an application designed to demonstrate a DMP device with Zigbee 3.0 coordinator capabilities.
¢ DynamicMultiprotocolLightSed is an application designed to demonstrate a DMP device with SED capabilities.
¢ DynamicMultiprotocolSwitch is a Zigbee-only application designed to work with the two Zigbee/Bluetooth applications.

The following summary procedure uses the DynamicMultiprotocolLight example application.
1. In Simplicity Studio, start a new project selecting the DynamicMultiprotocolLight example.
2. If your project General tab shows GNU-ARM as a compiler, change to IAR EWARM.

i

5% Repla
E . et Run W B Setec
Br-ird- QI O~ - - = o - B | fy Louncher () Simplicity IDE & Editing
& Project Explorer 1 = % 1| & "DynamicMultiprotocollightSoc e (1)
v &5 DynamicMultiprotocollightSoc e
|m|u.1: s e D Siicon Labs Zigbee, version6.6.0.0 P Genemste| | ¢ B
€| DynamicMulbgrotecollightSeoc calibacks.c Genaral &4 ZCL Chusters Zighee Stack Printing and CLI HAL | == Ph ' i)
et 162a_efvI2mg 1 2p3 12 1024g11 25 vweont o 2 LR o Crinting L UFNE || we Sedect architecture o *®
& DynamicMultiprotocollightSoc.isc = Apphcation conflguration e
Generation directory: | Relative to I5C file| | C\Users\ CADWENS Simplicity Studio'wd_rel.Staging 293 | Search v
Slact aechinectuen foe this Spplcations EFR32MG12 24GHz 10 88m (BAOL1E2A Rev ADT) *
@ Board: EF 10 dBrn (BRD41624 Rew A01)
@ Pan: EFRIIM
£ Tocleh
£t Architecture Purt
asich w
Device name: | DynamichultiprotocolLightSoc EFRIZMGI2P332FI024GLIZS
€ »
8 Debug Advpterc 2 71 | BE Outine £ |||~ intormation Contiguration (R AR G118 <l
Y X AXRO-OREE Deseniption (M toclchasn) (v.0.0)
J-Lind Silicon Labs (H0083306) Sample application demonitrating a bght application using dynamic
JLink Silican Labs (440085388) multiprotecel (TigBee = BLE) and NVMI for persistent storage
The Dynamic Multiprotocol Deme Light application demanstrate the dynamic E Concel
multiprotecel festure From Silabs. In particular, these applications _— —
demonstrate the ZiaBee and BLE stacks running concurrently as Micriumi3 tasks. ke
%! Protiems 3 Search T+ Call Hinrarchy
Descriptson Resource Path Locatson Type

3. Click Generate to generate project files.
4. Click Build (hammer icon) to build the application image.

silabs.com | Building a more connected world.

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
Working with the Zigbee/Bluetooth Examples

5. Note the board and part number for your device and the directory for generated files.

== Simplicity IDE - DynamicMultiprotocolLightSoc/DynamicMultipretocollightSoc.isc - Simplicity Studic ™ = a *
File Edit Mavigate Search Project Run Window Help &% App Builder

(@i | ®-/-if-F-eo-o-in

[Project Explorer 53 = & ¥ = B || & DynsmicMultiprotocollightSoc.isc 2]
% DynamicMultiprotocolLightSoc [|AR ARM - [

5 | 1% Launcher {} Simplicity IDE
ﬂ Silicon Labs Zigbee, version:6.6.0.0 P Generate | << Preview

& Gerlerai..' '8 Z(LCIusters-_ L EgbeeStack-_ & Printing and CLI-_. HAL | <= Plugins §' Callbacks-' & Includes. =

- - - - - -~ |
-
{eneraliun directory: | Relative to ISC file | | C:\Users\CAOWENS\SimplicityStudio\vd_rel.Staging_2968\DynamichMultipratocolLightSoc | ._,]

Select architecture for this application:

@ Board: EFR32MG12 2.4GHz 19 dBm (BRD4161A Rev ADT)
@ Part: EFR32MG12P432F1024GL125

o Toolchain: IAR ARM v8.30.1.114

Edit Architecture

Device name: [DynamicMultiprotocelLightSoc

£ >
#H Debug Adapters 53 | 3= Outline = A ~ Information Configuration
CAR A Er BN o BN == =R Description
v J-Link Silicon Labs {440085382) Sample application demonstrating a light application using dynamic A
~ [EFR32MG12 2.4GHz 19 dBrm (BRDA1ETA | multiprotocel (ZigBee + BLE) and NVM3 for persistent storage
‘;N;i E::BZMG12meIOMGL125 The Dynamic Multiprotocol Demo Light application demonstrate the dynamic
> [l Wireless Starter Kit Mainboard (BRD4001 multiprotocol feature from Silabs. In particular, these applications
demonstrate the ZigBee and BLE stacks running concurrently as MicriumOS tasks. v
I# Problems 4’ Search 3 Call Hierarchy & Console 52 | &4 9 5 | LA BE £ | B~ = 0
CODT Build Console [DynamicMultiprotocolLightSoc]
~
11:41:01 Build Finished (took 1lm:293.564ms)
v
< >

e cjowens325@earthlink.net i © 2018 Silicon Labs

6. Right-click the target J-Link under Devices, and select Upload Application.
7. Browseto<folder on General tab>\IAR ARM - <qualifier>\<project name> and select the .gblfile.

8. Silicon Labs strongly recommends that, if you have not already loaded a bootloader onto your device, you do so now. Check Erase
chip before uploading image. Check Bootloader image, then browse to the following folder:

C:\SiliconLabs\SimplicityStudio v5\developer\sdks\gecko sdk suite\<version>\platform\boot-
loader\sample-apps\bootloader-storage-spiflash-single\

Open the folder that corresponds to your board and part number and select the .s37 file, for example:

\efr32mgl2p432£1024gl125-brd4l6la\bootloader-storage-spiflash-single-combined.s37

silabs.com | Building a more connected world.

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
Working with the Zigbee/Bluetooth Examples

9. When both images are selected, the dialog should resemble the following figure. Click OK.

«=% Binary image upload [m| x

Application image upload

Select an image from the list or browse for a different one.

Please make sure the selected image matches the hardware, [Showallimages
Name Chip Board Image Type Location Description ~
RFEval application EM250 Wirele.. Customa.. <internal> RFEval application firmware image
HA Light EMZ50 Wirele.. Customa.. <internal> HA Light application
HA Light EM351 Wirele.. Customa.. <internal= HA Light application
HA Light EM357 Wirele.. Customa.. <internal> HA Light application
HA Light EM3581 Wirele.. Customa.. <internal= HA Light application
HA Light EM3582 Wirele.. Customa.. <internal> HA Light application
HA Light EM3585 Wirele.. Customa.. <internal= H& Light application
HA Light EM3586 Wirele.. Customa.. <internal> HA Light application
HA Light EM3587 Wirele.. Customa.. <internal=> HA Light application
HA Light EM3582 Wirele.. Customa.. <internal> HA Light application
HA Switch EMZ250 Wirele.. Customa.. <internal> HA Switch application
HA Switch EM351 Wirele.. Customa.. <internal= HA Switch application
HA Switch EM357 Wirele.. Customa.. <internal> HA Switch application N

Application image path: | C\Users\ CAOWENS\SimplicityStudic'w4_rel.Staging_2968\DynamicMultiprotocelLightSoc\ AR ARM - Default\DynamicMultiprotocolLightSoc.gbl | =

Upload options

[] Bootloader image: ||tf0rm\boDtlDader\sampIe-apps\b0otl0ader-;torage-spiflash-singIe\efrBng12p432f1024g|125-brd4161a\bootloader-storage-spifIash-single-combined.ﬁ? v| =]

[1iErase chip before uploading image
After uploading: (® Run (O Halt
Flash: (® Internal () External 5P|

10. Application load success indicators are code-dependent. With the DynamicMultiprotocolLight example, the LCD should display
the following before changing over to the light bulb display:

Whether the application is a full function or a sleepy end device is determined by the Device Type on the ZNet tab.

2.2 Converting a Zigbee Application to a Zigbee/Bluetooth LE Dynamic Multiprotocol Application

This section describes the configuration changes required to convert a working Zigbee application into a Zigbee/Bluetooth LE Dynamic
Multiprotocol application. The instructions assume you have started with a non-DMP Zigbee sample application or your own Zigbee
project, and that the application is working correctly.

Requirements:

e Zigbee application set up to build with IAR ARM v8.30.1 (for these instructions we use Z3 Light)
e EFR32MG12 or other EFR32 with sufficient memory (for these instructions we assume BRD4161 (EFR32MG12P432F1024GL125))

Note: The Dynamic Multiprotocol sample applications supplied with Simplicity Studio are already correctly defined and do not require
modification before project generation unless performing an OTA update. There is a potential conflict with the DMP sample app
LCD screen and the external flash. If you need to perform OTA updates, check the Dynamic Multiprotocol Ul Demo Code
Stub plugin as described in the following section.

silabs.com | Building a more connected world.

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
Working with the Zigbee/Bluetooth Examples

2.2.1 Generate and Build the Zigbee Application

The purpose of this procedure is to verify that the base application had loaded and is working correctly, and that output is printing to the
console. This example uses the Z3Light sample application in the EmberZNet SDK It begins with the default settings, so that the config-
uration changes are clear. Remember to select IAR as the toolchain.

Generate and build the project, load it to the board and check the Serial 1 output to make sure it's up and running.

&% DLightSoc2DMP_6610_brd4161.isc [69 No name (104.180.249) 3 l

[N ranslation =] Line terminator:

‘ - Serialﬂ‘ == Seriall | 2 Admin |; Dabugl

Join network start: O0xz00
Starting scan on channel 20
Starting scan on channel 24
Starting scan on channel 25
Starting scan on channel 11
Starting scan on channel 14
Starting scan on channel 15
MWE Steering State: Scan Secondary Channels
Starting scan on channel 16
Starting sean on channel 17
Starting scan on channel 18
Starting scan on channel 18
Starting scan on channel 20
Starting scan on channel 21
Starting scan on channel 22
Starting scan on channel 23
Starting sean on channel 24
Starting scan on channel 25
Starting scan on channel 26
Starting scan on channel 11
Starting scan on channel 12
Starting scan on channel 13
Starting scan on channel 14
Starting scan on channel 15
MWE Steering State: Scan Primary Channels an
Starting scan on channel 18
Starting scan on channel 20

w

2.2.2 Reconfigure the Project

The search bar at the top of the Plugins and other tabs is helpful when modifying the configuration. For plugins, the description explains
its utility for DMP. The following figure illustrates finding the RTOS plugin and its description.

(& General :A ZCL Clusters | Zigbee Stack [Printing and CLI [@ HPTL_I’@:‘ Plugins S Callbacks | & Includes |

3,

Plugin configuration
Use this section to select or unselect the plugins that you want to use in your application

Q, RTOS @ | 2 Plugin: <= RTOS Common
— quality: ¥ Production Ready
b (=] HAL
— . Description:
v (=] Utility P

This plugin provides OS support. If this plugin is enabled, the
= stack will be running within an OS as a an 0S task. The
|#A=f=Micrium RTOS, provides API: micrium-rtos, rtos-instance = application can also define up to 3 custom 0OS tasks.

[|=g=FreeRTOS, provides API: freertos, rtos-instance

TOS Common, provides API: main, rtos-common

Options: Reset to defaults
[v4 CPU usage tracking

[+ Poll cul

[Enable EM2

ZigBee Task call stack size:[250-5000] 1400

] Application Task (1)

e:[64-5000] | 200

Note: Beginning with SDK 6.9.0, the RTOS configurations options moved from the Micrium plugin to the RTOS common plugin and the
Zigbee Task call stack size is treated as words instead of bytes.

silabs.com | Building a more connected world.

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
Working with the Zigbee/Bluetooth Examples

On the Plugins tab, check the following:
RTOS

In SDKs 6.8.x or lower, check Micrium RTOS.

Plugin configuration -
Use this section to select or unselect the plugins that you want to use in your application
|Micr ;?=::> Plugin: == Micrium RTOS .
~ [m 3 tility Quality: % Production Ready
[#]== Micrium RTOS, provides APl: main, micrium-rtos Description:
This plugin provides Micrium O5 support. If this plugin is enabled, the stack will be running within
Micrium 05 as a Micrium OS5 task. The application can also define up to 3 custorm Micrium 05
tasks.
v

In SDKs 6.9.0 and higher, you have the option of using Micrium RTOS or Free RTOS. For Micrium RTOS, check Micrium RTOS and
RTOS Common.

Plugin configuration
Use this section to select or unselect the plugins that you want to use in your application

Q RTOS all Plugin: J= Micrium RTOS
+
— Quality: ¥ Production Read
- (=% HAL by y
- ' Description:
|_|<=HAL RTOS Library 2 e = - — = = - = 2 m
=% utili This plugin provides Micrium OS support. If this plugin is enabled, the stack will be running within
¥ (=% utility Micrium OS as a Micrium OS task. The application can also define up to 3 custom Micrium OS tasks.

||+~ FreeRTOS, provides API: freertos, rtos-instance

% 4% Micrium RTOS, provides API: micrium-rtos, rtos-instance

|%==RTOS Common, provides API: main, rtos-common

From SDK 6.9.x you can use FreeRTOS by selecting the FreeRTOS plugin and unchecking the Micrium RTOS plugin
FreeRTOS is not supported yet. Theoriticially it should work, but we do not plan on testing it before Q4.

Plugin configuration
Use this section to select or unselect the plugins that you want to use in your application

@ || % Plugin: <= FreeRTOS

Q, RTOS k?
— Quality: ¥ Production Ready

b (= HAL

- (=% utility Description:

= This plugin provides FreeRTOS support. If this plugin is enabled, the stack will be running within

&% 1+ FreeRTOS, provides API: freertos, rtos-instance FresRTOS as a FresRTOS task,

[)<= Micrium RTOS, provides API: micrium-rtos, rtos-instance
[#4=0-RTOS Common, provides API: main, rtos-common

BLE
Plugin configuration ~
Use this section to select or unselect the plugins that you want to use in your application
i A
|BLE || Plugin: <g= BLE
~ [W % Stack Libraries Quality: % Production Ready
[~1=3= BLE, provides API: ble Description:
[A 0> Binding Table Library, provides APl binding If this plugin is enabled, the BLE stack will be run in parallel with the ZigBee stack. Both stacks run
v W3 Utility as Micrium OS tasks.
[]=3= Address Table, provides APL: address-table
[]=3= Device Table, provides APL: device-table
]
Idle/Sleep
Plugin configuration ~
Use this section to select or unselect the plugins that you want to use in your application
e || Plugin > Idle/Sleep 2
v [m] 3% Utility Quality: W Praduction Ready
[=0= Idle/Sleep, provides APL: idle-sleep Description:
Ember implementation of idling and sleeping. This plugin can be used on devices that should ~
deep sleep as well as on devices that need to stay awake. For devices with an Rx-on-when-idle
network (such as a router), the plugin will attempt to idle the processor when it has no other tasks
to perform. |dling helps save power by halting the main loop of the application, but does not
interfere with the timely handling of interrupts. For example, when idling, the radic can still receive he

silabs.com | Building a more connected world.

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower

Working with the Zigbee/Bluetooth Examples

e mbed TLS Multiprotocol Configuration
R R e el D e D Rt T Bl A BT Dl e et R e e e I e R
Plugin configuration ~
Use this section to select or unselect the plugins that you want to use in your application
|mBed * Plugin: == mbed TLS Multiprotocel Configuration 2
v [m] 3 Utility Quality: % Production Ready
[== mbed TLS, provides APl: mbedtls Description:
8- - vzt Ll prtisas Sowipueiion prodiis il misiisaniz This plugin provides the mbed TLS configuration file that enables the cryptegraphic algorithms
that meet Silicon Labs multiprotocol requirements. The mbed TLS configuration file can be found
at config-multiprotocol.h,
v
[]

(optional) Dynamic Multiprotocol Ul Demo Code Stub

The USART used to communicate with the external flash on Silicon Labs radio boards is the same USART that communicates with

the LCD display on the WSTK. In order to perform an OTA update on a sample app that uses the LCD display, check Dynamic
Multiprotocol Ul Demo Code Stub. This disables the LCD display but allows the OTA to take place.

Plugin configuration .
Use this section to select or unselect the plugins that you want to use in your application
‘dyn || Plugin: <J= Dynamic Multiprotocol Ul Demo Code Stub .
v [m] % Utility Cuality: Wl Sample Code
] == Dynamic Multiprotocel Demo Ul Code, provides APl: dmp-demo-ui Description:
O D'ynam!c Mult!protocol Ut Demo Code, provides ,ﬂ..Pl: drmp-ui . This plugin provides stubs for the DynamicMultiprotocelDemeoLight app. This plugin is to be used
[]=J= Dynamic Multiprotocol Ul Demo Code Stub, provides APL: dmp-ui to satisfy compilation when the display driver is not used (primarily, when the Dynamic
Multipratocel Ul Demo Code plugin is not enabled). v
2. On the Plugins tab, uncheck (disable) the following:
e Simple Main
- 1 - 1= = 1= = | = 1 - | 1 | I 1
Plugin configuration ~
Use this section to select or unselect the plugins that you want to use in your application
|;imple T Plugin: =] Simple Main .
v % Smart Energy Quality: % Production Ready (Certifiable)
== Description:
D-@:; - This plugin provides a working main entry point into an EmberZMet application. It supplies a main
v E$ Utility () function that provides necessary initialization and main loop code for the program. Since this
== Simple Clock feature is a plugin, users can easily choose whether to use this plugin for their main() function, or
[== Simple Main, provides APl: main to supply their own implementation. If the user does decide to write their own main() function,
e 0= TimBes ATA Bantlnadina then this plugin can serve as a good example for main loop design. A
3. On the Plugins tab, change settings for the following:
e HAL
¢ Uncheck Simulated EEPROM version 1 Library.
e Check Simulated EEPROM Version 2 to NVM3 Upgrade Library (this will also enable the NVM plugin).
— 1 - 1= = | = | = 1 - < | | | I 1
Plugin configuration ~
Use this section to select or unselect the plugins that you want to use in your application
|simu g3 Plugin: ~
~ [m]% HAL: Quality:
[== Simulated EEPROM version 1 Library, provides APl: sim-eeprom, toker| | Description:
[J=g= Simulated EEPROM version 1 to version 2 Upgrade Library, provides Af
== Simulated EEPROM version 1 to version 2 Upgrade Stub, provides API:
== Simulated EEPROM version 2 Library, provides APl: sim-eeprom, toker
[== Simulated EEPROM version 2 to NVM3 Upgrade Library, provides API:
[J == Simulated EEPROM version 2 to NVM3 Upgrade Stub, provides APl sir v

silabs.com | Building a more connected world.

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
Working with the Zigbee/Bluetooth Examples

e RAIL

e Uncheck RAIL Library.
e Check RAIL Library Multiprotocol.

o Silicon Labs Zigbee, version:6.6.1.0 P Generate | | << Preview
% General (A ZCL Clusters (.l Zigbee Stack (.'l. Printing and CLI (. HAL (’3‘»“ Plugins g Callbacks}.‘l \ncludes] o Other option;} @ Bluetooth GA'I_I'W
Plugin configuration ~
Use this section to select or unselect the plugins that you want to use in your application
|RAIL | Fe| | Plugin: ~
v [m 5 RAIL Quality:
[J=d= RAIL Library, provides API: rail-library Description:
[== RAIL Library Multiprotocal, provides API: rail-library, radio-multiprotos
v
e UTILITY
¢ Inthe CCM* Encryption plugin, uncheck AES-CCM Software Implementation and check mbedTLS Implementation.
Plugin configuration
Use this section to select or unselect the plugins that you want to use in your application
|CCM “: || Plugin: <J= CCM* Encryption 2
v | % Utility Quality: €9 working
[== CCM* Encryption, provides APl: cem-star Description:
This plugin provides the AES-CCM* api for encryption, decryption, and Message Integrity
Authentication. Implementation can be provided by the mbedTLS framewaork, or through software
Options: Reset to defaults
[AES-CCM Software Implementation
v

silabs.com | Building a more connected world.

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
Working with the Zigbee/Bluetooth Examples

4. Add Bluetooth GATT elements:

On the Bluetooth GATT tab, Services tab, drag and drop the following into the Custom BLE GATT window:

e Device Information
e Generic Access

& Genersl | oy ZCL Choters | B Zighee Siack B Prmtingend €U) HAL 9 Plugms |5 Callbecks & Inchudes | b Otheroptions | () Bluctooth GATT
GATT Configunatos

Sourer feters B Custom BLE GATT —
BT [Sikcon Laks

Profibes | Sonicn . Charactaristacs | Descriptorns x
den

B Daesnce nformatson
a B Genenc Access
(3 Drvsce Hama b
] Husnan Intedace Devace

a Sehoct 8 GATT ivern o configuse

expoies manadasctuer info
sted a5 & Primasy Senace. Only

5. Add an identifiable name for your device to advertise by modifying the Generic Access > Device Name Value. Be sure to increase
the Length 1 byte per character.

LU
4 B Generic Access
|I5 Device Name |
(5] Appearance
Peripheral Privacy Flag
Reconnection Address
Peripheral Preferred Connection Parameters

o General settings

Mame Device Name
[User description
Characteristic settings
ID device_name UUID 2400

5IG type org.bluetooth.characteristic.gap. device

Volue settings

Value DMPAEVA Value type [utf8 ~]
Length |7 [=] byte [Variable length
Properties

silabs.com | Building a more connected world. Rev. 1.0 [10

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
Working with the Zigbee/Bluetooth Examples

6. Add BLE callback code:

In the Callbacks tab, enable Plugin-specific callbacks: Event.

&% General (A ZCL Clusters (& Zigbee Stack (& Printing and CLI (. HAL ('33 Plugins (.(::)’ Callbacks I

=] s%% @hrief
*
bl .
£ *# This func
Name Use Type “|the BLE stac
4 % Non-cluster related application
& Clear Report Table == Custom callback, in plugin: ... */StaCk B
*
& Start Search For Joinable Network |:| Custom callback void
4 % Plugin-specific callbacks) - emberAfPlug:
S Event Plugin specific: BLE = juct gecko_er
S Get Config I:‘ Plugin specific: BLE

. o% Handlers defined by stack
% Callhacks defined bu APTe

7. Generate the project.
8. Add emberAfPluginBleEventCallback code to the [project_name]_callbacks.c file, based on the SDK version you are using..

For SDK 6.7.x:
/** Qbrief

*
* This function is called from the BLE stack to notify the application of a
* stack event.
* In this case it will provide simple advertising for the BLE component of the Z3Light DMP app
*/
void emberAfPluginBleEventCallback(struct gecko_cmd_packet* evt){

switch (BGLIB_MSG_ID(evt->header)) {
case gecko_evt_system_boot_id:

gecko_cmd_le_gap_start_advertising(®, le_gap_general_discoverable,le_gap_connectable_scanna-
ble);
emberAfCorePrintln("BLE Advertising started");
break;
case gecko_evt_le_connection_opened_id:
emberAfCorePrintln("BLE connection opened"); //Will cause advertising to stop
break;

case gecko_evt_le_connection_closed_id:
emberAfCorePrintln("BLE connection closed");
gecko_cmd_le_gap_start_advertising(®, le_gap_general_discoverable,le_gap_connectable_scanna-
ble); // restarting advertising

break;

default :
emberAfCorePrintln("unhandled BLE event\r\n");
break; }

silabs.com | Building a more connected world. Rev. 1.0 | 11

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
Working with the Zigbee/Bluetooth Examples

For SDK 6.8.x:

#include "sl bt rtos adaptation.h"
static uint8 t advertising set handle = Oxff;

/** @brief

*
* This function is called from the BLE stack to notify the application of a

* stack event.
* In this case it will provide simple advertising for the BLE component of the Z3Light DMP app

*/
void emberAfPluginBleEventCallback(sl_bt_msg t* evt){

switch (SL_BT_MSG_ID(evt->header)) {
case sl_bt_evt_system boot_id:

sl_bt_advertiser_create_set(&advertising_set_handle);

sl_bt_advertiser_start(advertising_set_handle, // advertising set handle
advertiser_general_discoverable, // discoverable mode
advertiser_connectable_scannable); // connectable mode

emberAfCorePrintln("BLE Advertising started");
break;
case sl_bt_evt_connection_opened_id:
emberAfCorePrintln("BLE connection opened"); //Will cause advertising to stop
break;

case sl_bt_evt_connection_closed_id:
emberAfCorePrintln("BLE connection closed");
sl_bt_advertiser_start(advertising_set_handle, // advertising set handle
advertiser_general_discoverable, // discoverable mode
advertiser_connectable_scannable); // connectable mode
break;
default:
emberAfCorePrintln("unhandled BLE event\r\n");
break;

9. For SDK 6.8.x and up, the following defines need to be added to the file mbedtls-config-generated.h:

#tdefine MBEDTLS CTR DRBG C
#tdefine MBEDTLS SHA256 C
#tdefine MBEDTLS ENTROPY C

silabs.com | Building a more connected world. Rev. 1.0 [12

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
Working with the Zigbee/Bluetooth Examples

10. Build and flash your project and look for your device in the Bluetooth Browser screen of the EFR Connect cell phone app.

<

Browser R
i= Log 8 0 Connections Q Filter
N/A @ 103ms
35:68:7840:84:9A
* = Q
Non-Connectable -38dBm Unspecified

DMP4EVA ®103ms

00:0B:57:64:8D:EB

% = o

Connectable -49dBm Unspecified

4F:07:18:85:61:73

*» = Q

Connectable -96dBm Unspecified

N/A @ 100ms
15.5A87F3:53.78

* =)
Non-Connectable -94dBm Unspecified

7A:4A:DC:E8:34:DB

b3 = Q

Connectable -66dBm Unspecified

Stop Scanning

You can also see comments for the BLE activity in the Serial 1 window among the Zigbee prints

[% Serial0| <= Seriall |7 Admin | % Debug|
Z3lightBSocZDMP_bbl0_brd4lblisuccess
ZiLightSoc2DMP_E010_krd4161>Reset info: Oxz06 [3W)

Extended Reset info: 0x0600 (UNK)

Z11CommInit - device is not joined to a network
Setting rx on pericd to 300000

Setting default channel to 11

BLE Advertising started

MwWE Steering State: Scan Primary Channels and use Install Code
Error: MWK Steering could not setup security: 0xB?7
MwE Steering State: Scan Secondary Channels and use Install Code
Error: NwK Steering could not setup security: O0xB?Y
MwE Steering State: Scan Primary Channels and Use Centralized Eey
Starting scan on channel 24
MWE Stesring: Start: O0xz00
Join network start: Oxz00
Starting scan on channel 25
Starting scan on channel 11

This is very basic Bluetooth functionality. To learn more about programming BLE functionality, see QSG 139: Bluetooth® SDK v2.x Quick
Start Guide/QSG169: Bluetooth® SDK v3.x Quick Start Guide, included with the corresponding Bluetooth SDK.

silabs.com | Building a more connected world. Rev. 1.0 [13

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
About the Zigbee/Bluetooth LE Examples

3 About the Zigbee/Bluetooth LE Examples

The Zigbee/Bluetooth LE Dynamic Multiprotocol examples demonstrate a light that can be controlled from both Bluetooth and a Zigbee
network. Software is included both as compiled demonstrations and as example code in the EmberZNet SDK. The purpose of the exam-
ples is to show the way of implementing a dynamic multiprotocol application using the Silicon Labs EmberZNet stack.

The Dynamic Multiprotocol Demo application has three main components.
1. User Interface (LCD and Buttons)

2. Zigbee application (FFD and/ or SED)

3. Bluetooth application

3.1 User Interface

The user interface is developed specifically for the dynamic multiprotocol demonstration, and APIs to update the text and graphic on the
LCD are called directly from Zigbee and Bluetooth event handlers. The implementation to manipulate the LCD is contained in the following
files,

bitmaps.h //Contains the arrays containing the bitmap of the graphics drawn on the LCD

dmp ui.c //Contains the functions to change the state of the display based on the state of the
application

dmp ui.h //Header file exporting functions implemented in the dmp ui.c

The above uses the display driver library supplied by Silicon Labs to update the content on the LCD display mounted on the WSTK.

3.2 Zigbee Application
The example DynamicMultiprotocolLight is set up to be a light and a coordinator on the Zigbee network.

The following cluster set is supported by both the DynamicMultiprotocolLight and DynamicMultiprotocolLightSed applications.

Supported Clusters

Basic

Identify

Scenes

Groups

On/Off

ZLL Commissioning

The DynamicMultiprotocolLight example also supports Green Power Proxy Basic behavior. Please note that the examples were de-
veloped with a focus on demonstrating dynamic multiprotocol features and may not be Zigbee-certifiable.

The On/Off cluster controls the LEDs and the bulb icon on the WSTK board to represent the state of the light.
The dynamic multiprotocol applications make use of Micrium OS and the Zigbee applications are run as a task of Micrium OS.

The hardware and peripherals of the chip are initialized before any tasks are created. A Zigbee task is created after initialization, which
then creates the application tasks and Bluetooth task.

The Micrium plugin also includes the source file micrium-rtos-sleep.c, which enables the sleepy DMP application to manage the sleep
functionality.

Note that in Bluetooth SDK v3.x commands were renamed and restructured. The code example in the last box illustrates both.

silabs.com | Building a more connected world. Rev. 1.0 | 14

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
About the Zigbee/Bluetooth LE Examples

From: micrium-rtos-main.c

Micrium-rtos.main.c

halInit();
Initialize Hardware initMieriumCpu() ;
emberifMainInit();
Y

0STaskCreate(&zigbeeTaskContrelBleck,

"Zigkee Stack",

zigbeeTask,

NULL,

ZIGBEE STACK TRSE PRICRITY,

. szigbeeTasksStack([D],

Create a Zigbee Task EMBER_AF_PLUGIN_MICRIUM_RTOS_ZIGBEE STACE SIZE / 10,
EMBER AF PLUGIN MICRIUM RTOS ZIGBEE STACE SIZE,
0, // Mot receiving messages
0, // Default time quanta
NULL, // Nc TCB extensicns
0S_OPT_TASK STK CLR | OS OPT TRSK STE CHE,
&err);

L 4
Zlgbee Task creates bluetocth_start_task(BLE_LINE LAYER TASE FRIORITY,
BLE Task BLE_STACE TASE PRIORITY); /¥ w2ix %
sl bt_rtos init(); /Y ow3ix %/

silabs.com | Building a more connected world. Rev. 1.0 |15

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
About the Zigbee/Bluetooth LE Examples

From: af-main-soc.c

2f-main-scc.c

Initialize Zigbee Stack statusSerberInit (};

emifInitializeMetworkIndexStack() ;

J/ Initialize messageSentCallbacks table
emifInitializeMessageSentCallbackhrray ();
emberAfEndpointConfigure () ;

emkfInit ();
SECUFitY and Frame- // The address cache needs to be initialized and used with the
work Initialization source routing

// code for the trust center toc cperate properly.
securityhddressCacheInit (EMBER AF PLUGIN ADDRESS TABLE SIZE,
/i offset

EMEFR_AF PLUGIN ADDRESS TABLE TRUST CENTER CACHE SIZE);
/i size

EM LF NETWORK_INIT ();

while (true) {

halResetWatchdog () ; J// Periodically reset the watchdog.
emberTick(); // Bllow the stack tc run.
// Bllow the ZCL clusters and plugin ticks to run. This
should go
Start forever |ODP to // immediately after emberTick

service Zigbee and // Skip these ticks if a cryptc cperaticn is cngeing

if (0 == emRfIsCryptoOperaticnInProgress()) {
Bluetooth events Ticn() s

}

emberSerialBufferTick();
emberifRunEvents () ;

silabs.com | Building a more connected world. Rev. 1.0 | 16

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
About the Zigbee/Bluetooth LE Examples

On either DMP light application, once the Zigbee stack is set up to run, subsequent interactions with the stack occurs via event handlers,
as shown in the following figures. The following figure shows the event handlers in the full function light application.

emberAfStackStatusCallback

EVT:EMBER_NETWORK_UP o] i
e Start permit Join and identify for 180 s

e Restart the reporting for On/Off attribute

emberAfOnOffClusterServerAttributeC

hangedCallback

EVT::AttributeChangedCh
e Update the LED state.

e Send aindication to mobile device
for light state and trigger source.

State :Idle

emberAfTrustCenterloinCallback

EVT::Device Joined/Left Zigbee Nwk if (status = DEVICE _LEFT)\
Mo Clear Binding table entry
if (status = DEVICE _JOIN)\

e Disable permit join

buttonEventHandler

if (button = BUTTONO)\

EVT::halButtonlsr o Toggle the ON_OFF_ATTRIBUTE
¥, if (button = BUTTON 1)

o if(noNwk) -> formNwk

e elseif(longPress) -> LeaveNwk

e else->start pjojn and identify for

180s.
_ /

Figure 3-1. DMP Full Function Light Event Handler Definition

Note: Whenever the light starts pjoin, it starts identifying and also puts all the connected lights in identify mode. This helps the
joining switch to identify all the lights present in the network.

silabs.com | Building a more connected world. Rev. 1.0 [17

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
About the Zigbee/Bluetooth LE Examples

The following figure shows the application interaction with the stack with the event handlers used for the sleepy light application.

emberAfPluginNetwork5teeringComplete

Callback
-~ . or -
__EWT::NetworkSteering CompleteCh ® Startident 'fwng for 180 s
_— e Restart the reporting for On/Off
T | attribute
4 h,)

emberAfOnOffClusterServerAttributeC

hangedCallback

EVT::AttributeChangedCh

State: ldle

* Update the LED state.
® Send aindication to mobile device
_forlight state and trigger source.

\ buttonEventHandler

N if (button = BUTTONO},
EVT--halButtonlsr ® Togglethe ON_OFF_ATTRIBUTE
—— _,|if((button=BUTTON1)
o if{noNwk]} -> joinMwk
* glseif{longPress) -» LeaveNwk
® clse-> start identifying for 180s.

,)

Figure 3-2 DMP Sleepy Light Event Handler Definition

Note: To avoid the risk of shared resources, if you want to send Zigbee messages from a task other than the Zigbee Stack Task, we
advise you to schedule a custom event from within the non-Zigbee Stack task. In the corresponding event handler function for
the custom event the Zigbee stack APIs can be used, as the event handler will be called from the Zigbee Stack Task context.

silabs.com | Building a more connected world. Rev. 1.0 [18

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
About the Zigbee/Bluetooth LE Examples

3.3 Bluetooth Application

The Bluetooth application supports following services and characteristics. These are pre-selected in the GATT editor during project gen-

eration.
Service Characteristic

Manufacturer Name String
Model Number String
Serial Number String
Firmware Revision String

Device Information

Device Name
Appearance
Light

Trigger Source

Generic Access

Silabs DMP Light

3.3.1 Silabs DMP Light Service

In the above table the Silabs DMP Light is a custom service with a UUID of bae55b96-7d19-458d-970c-50613d801bc9. This
custom UUID is used to uniquely identify the Light by the Wireless Gecko application.

The Service has two characteristics,

Characteristic Data Type Description

Light 8bit Boolean Usedl to get and set the light state
1 = Light On
0 = Light Off

Indicates the source of the Light state
change command.

0 = Bluetooth
1 = Zigbee
2 = Button Press

Trigger Source 8bit enum

3.3.2 Beacons

The application implements both an iBeacon as well as an Eddystone beacon. The default behavior is to transmit each beacon at 100 mS
intervals.

z E 2
= &
&5 3 .1
i o i
Om35 100mS 200mS5S

Rev. 1.0 | 19

silabs.com | Building a more connected world.

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
About the Zigbee/Bluetooth LE Examples

3.3.3 Bluetooth Event Handling

The Bluetooth stack is initialized as part of the Zigbee Task, as shown in the Zigbee implementation section. The Bluetooth task handles
the Bluetooth LE link layer messaging and management. The Bluetooth stack’s interaction with the user application is through a framework
plugin. A number of events that are called in the context of the Zigbee task allow the user application to interact with the Bluetooth stack.
The following diagram describes the Bluetooth-related events. In Bluetooth v3.x commands and events were renamed, substituting sI_bt_
for gecko_cmd_ and gecko_, respectively. Both variants are shown.

Note: Bluetooth event handling is same for both DMP demos.

Start BLE Advertisements

¢ Program the BLE device name
¢ Ser BLE advertise ment params
—— i o Advinterval 100 mS
s All channels
; ¢ Make device connectable, if no
E"\-'_ZZRE_O{_.]?:‘ZJ_-"E-.-':_E:;'E':E”-_OJ31_ d | device i connected.

Connect Request

| EVT:<sl_bt fgecko_=evi_connection_opened_id - e

| Populate the BLE connection table _|

Disco nnect Request

EVT.:=sl bt fgecko_>evi connection_closed_id -»

| Update the BLE connection table |
L. o

Srae: idie

Write light state

| <sl_bt_/gecko_=ewt gatt_server_user_read_request_id » Update On/O ff Zi ghEE attribute
| on Light.

Read light state or trigger source

EVT:<s|_bt_igecko_>evt_gatt_server_user_wrte_request_id # Indicate the light state or trigger
source to connected device.

Figure 3-3 DMP Bluetooth Event Handler Definition

3.3.4 Bluetooth and Zigbee Interaction

The primary purpose of the example applications is to show Zigbee and Bluetooth working together on a device. For this purpose, when
the Light receives a command to change its state through one protocol, it executes the command and sends out a notification to the other
devices using the other protocol to keep everything in sync. Their interaction is the same in both examples.

Two basic operations are described below, first a write to Light characteristics from a Bluetooth connected device (shown in the following
figure) and then a change in the Light state from a Zigbee device.

silabs.com | Building a more connected world. Rev. 1.0 | 20

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
About the Zigbee/Bluetooth LE Examples

Write from the Bluetooth Connected Device

Bluetooth
&

Bluetooth Zigbee

Zighee

Write Characteristic DMP Demo On/Off Cluster DMP Demo
Light (On or Off) Light Attribute Report Switch

Smartphone

The application’s services and characteristics are pre-selected in the GATT editor in Simplicity Studio. Upon generation the characteris-
tics are #define in the gatt_db.h. Using the #define reference, the characteristics can then be coupled to read and write Bluetooth re-
quests. For example the Light characteristic is reference from GATT as gatt light state which is then tied to an application
specific write APl of writeLightState inthe AppCfgGattServerUserWriteRequest as shown below.

static const AppCfgGattServerUserWriteRequest t appCfgGattServerUserWriteRequest[] =
{

{ gattdb light state, writeLightState },

{ 0, NULL }
}i

The application implements the Zigbee attribute write and a Bluetooth write response in the writeLightState function as follows:

static void writeLightState(uint8 t connection, uint8array *writeValue)
{
lightDirection = DMP UI DIRECTION BLUETOOTH;
emberAfWriteAttribute (emberAfPrimaryEndpoint (),
ZCL_ON OFF CLUSTER ID,
ZCL ON OFF ATTRIBUTE ID,
CLUSTER MASK SERVER,
(int8u *)&writeValue->datal([0],
ZCL BOOLEAN ATTRIBUTE TYPE) ;
<sl bt /gecko cmd>gatt server send user write response(
connection,
gattdb light state,
ES WRITE OK
)
}

The emberAfWriteAttribute () is used to write the attribute table of the Zigbee application with the value supplied by the Blue-

tooth connected device above. Since the on-off attribute of the on-off server cluster is a reportable attribute it is reported to all devices
setup in the binding table of the Light.

The emberAfOnOffClusterServerAttributeChangedCallback () isthen used to change the state of the LEDs and the
LCD to indicate the state of the light on the WSTK main board.

Write from the Zigbee Connected Device
The flow in the other direction, that is a change in the Light state from Zigbee connected device, is shown in the following figure.

Bluetooth
&

Zighee

Bluetooth Zighee

Indicate Characteristic DMP Demo On/Off Cluster DMP Demo

Smartphone pouy Light & Trigger Seurce Light Toggle Command Switch

silabs.com | Building a more connected world. Rev. 1.0 |21

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
About the Zigbee/Bluetooth LE Examples

Any on-off client on the same network as the Light can send an on-off cluster’s On, Off or Toggle command to the Light to change its
state. Once such a command is received over the Zigbee interface the Silicon Labs Zigbee framework interprets it and calls an appro-
priate handler to change the value of on-off attribute of the on-off server cluster. In the example DynamicMultiprotocolSwitch applica-
tion the on-off client sends a Toggle command to the Light, which toggles the value of the on-off attribute and triggers the embera-
fOnOffClusterServerAttributeChangedCallback (). The callback is then used to change the state of the light as well as
send notifications for both Trigger Source and Light characteristics to the connected Bluetooth devices and to update the LEDs and the
LCD to indicate the change in the Light state.

void emberAfOnOffClusterServerAttributeChangedCallback (int8u endpoint,
EmberAfAttributeId attributelId)
{
EmberStatus status;

int8u data;
if (attributeId == ZCL_ON_OFF ATTRIBUTE_ ID) ({
status = emberAfReadAttribute (endpoint,
ZCL_ON_OFF_CLUSTER ID,
ZCL_ON_OFF ATTRIBUTE ID,
CLUSTER MASK SERVER,
(int8u*) &data,
sizeof (data),
NULL) ;
if (status == EMBER ZCL STATUS SUCCESS) {
if (data == 0x00) {
halClearLed (BOARDLEDO) ;
halClearLed (BOARDLED1) ;
dmpUiLightOff () ;
notifyLight (currentConnection, 0);
} else {

halSetLed (BOARDLEDO) ;
halSetLed (BOARDLED1) ;
notifyLight (currentConnection, 1);

dmpUiLightOn () ;
}
if ((lightDirection == DMP UI DIRECTION BLUETOOTH)
|| (lightDirection == DMP UI DIRECTION SWITCH)) {
dmpUiUpdateDirection (lightDirection) ;
} else {

lightDirection = DMP UI DIRECTION_ ZIGBEE;
dmpUiUpdateDirection (lightDirection) ;
}
ble lastEvent = lightDirection;
lightDirection = DMP UI DIRECTION_ INVALID;

if (ble_lastEvent != DMP_UI_ DIRECTION_ INVALID) {
if ((ble_lightstate_config I= GAT_RECEIVE_INDICATION) && (ble_lastEvent_ config
GAT RECEIVE INDICATION)) {
notifyTriggerSource (currentConnection, ble lastEvent);

silabs.com | Building a more connected world. Rev. 1.0 |22

AN1133: Dynamic Multiprotocol Development with Bluetooth and Zigbee EmberZNet SDK 6.x and Lower
Document Revision History

4 Document Revision History

Revision 0.9
e Documents the new freeRTOS support

Revision 0.8
¢ Removed the “Define the mbedTLS path” step in the procedure in section 2.2.
e Modified the 6.8.x code that illustrates adding emberAfPluginBleEventCallback code to the [project_name]_callbacks.c file,

Revision 0.7
e Update to reflect changes for EmberZNet 6.8.0/Bluetooth SDK 3.0.0.

Revision 0.6
e Section 2.2 re-inserted with functional instructions.
e Fixed duplicated bookmarks in PDF.

Revision 0.5
e Updated section 2.1. Temporarily removed section 2.2 on project configuration.

Revision 0.4
e Added note about conflict between LCD and external flash for OTA.

Revision 0.3
¢ Added note about threat-safe implementation to section 3.2.

Revision 0.2
¢ Modifications for supporting sleepy light device.

Revision 0.1
e Initial release

silabs.com | Building a more connected world. Rev. 1.0 |23

Simplicity Studio

One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

loT Portfolio SW/HW Quality Support & Community

www.silabs.com/IoT www.silabs.com/simplicity www.silabs.com/quality www.silabs.com/community

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does notimply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class Il devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personalinjury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
allexpress and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology thatis now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs®and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect, n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo® USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fiis a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

USA

SILICON LABS www.silabs.com

	1 Introduction
	1.1 Resources
	1.2 Development Environment Requirements

	2 Working with the Zigbee/Bluetooth Examples
	2.1 Application Generation
	2.2 Converting a Zigbee Application to a Zigbee/Bluetooth LE Dynamic Multiprotocol Application
	2.2.1 Generate and Build the Zigbee Application
	2.2.2 Reconfigure the Project

	3 About the Zigbee/Bluetooth LE Examples
	3.1 User Interface
	3.2 Zigbee Application
	3.3 Bluetooth Application
	3.3.1 Silabs DMP Light Service
	3.3.2 Beacons
	3.3.3 Bluetooth Event Handling
	3.3.4 Bluetooth and Zigbee Interaction

	4 Document Revision History

