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TinyML vs Al/ML
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Al/ML - Broader machine learning models that
require more computational power and are typically
run on servers or high-performance edge devices.

= Complex tasks such as deep learning, large-scale data
analysis, and sophisticated pattern recognition.

= Greater accuracy, advanced capabilities, and ability to
handle complex data processing tasks.

TinyML - A subset of machine learning designed for
deployment on microcontrollers and low-power
devices.

= |deal for simple tasks like anomaly detection and basic
classification in resource-constrained environments.

= Low power consumption, real-time processing on-
device, and cost-effective for embedded applications.
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Why Machine Learning on Microcontrollers?

Reduce Decision Lower data and Bandwidth Offline Mode L ower Device and Improved Low
Latency device security risk Constraints Operation Service Cost Power Operation
* Make more real time » Keeping data local to * Bandwidth limited loT * Allows for nodes to * Lowers performance * Reduces number of
decisions closer to devices reduces risk of networks cannot operate requirements for network
where the data is exposure during transmit large amounts autonomously and sensor devices and transmissions to
collected transmission of data required for make decisions even limits recurring costs improve overall
cloud centric when network is battery life
architectures unavailable

Data processing is more efficient with Machine Learning at the sensor level
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Reducing Decision Latency

More Real-Time Responses:

» Rapid decision-making allows systems to respond instantly
to changes.

Increased Accuracy:

» Quick decisions based on real-time data help in making

timely adjustments, leading to more accurate outcomes
Communicate

Adaptive Learning locally:

—~ /\ = Systems can continuously learn and adapt to new data
—> W))) O & '|'|||' B \{?@ more effectively, improving model accuracy and reliability

over time.
Event Detection Act

Parallel Processing Capabilities:

» Addition of AIML accelerators enable simultaneous task
execution, resulting in higher throughput and faster
response times for real-time applications
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Lowering Data Security Risks
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Local Data Processing:

= Reduces the need to transmit sensitive information over
networks, minimizing exposure to interception.

= Results are sent to the cloud rather than the data.

Privacy Compliance:

= Keeping data on-device aligns with privacy regulations,
as less personal data is transmitted or stored in the
cloud, thereby minimizing compliance risks.

Data Encryption:

= Secure Vault with PSA L3 certification ensures sensitive
data to be encrypted before storage or transmission,
adding an additional layer of security.

Firmware Updates:

= Secure over-the-air (OTA) updates for firmware can
help ensure that devices are running the latest security
protocols and patches, protecting against
vulnerabilities.

Real-Time Anomaly Detection:

= TinyML can continuously monitor for unusual patterns
locally, enabling immediate responses to potential
threats.
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Addressing Bandwidth Limitations of loT Networks
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Reduce Data Volume:

= Only relevant data is transmitted instead of raw data.
This is crucial in low-bandwidth settings like LPWAN,
which typically supports data rates of 0.1 to 50 kbps.

Optimize Use of Limited Bandwidth:

= Given LPWAN's constraints, minimizing the data sent
not only conserves bandwidth but also enhances the
reliability of communication.

Selective Data Transmission:

= Edge devices send updates only when specific
conditions are met (e.g., threshold breaches), which is
crucial for LPWAN, where frequent transmissions can
quickly exhaust bandwidth.

Scalability:

= BLE mesh allows devices to communicate directly,
reducing reliance on a central hub and enabling a
scalable network where many devices can relay
information.

= Wi-Fi networks effectively segment traffic, and by
processing data at the edge, devices reduce network

load and improve efficiency, allowing for better scaling
without performance degradation.
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Making Decisions Without Network Access
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Self-Sufficient Devices:

= Edge devices can operate independently, making them
ideal for applications in remote or challenging locations
where connectivity may be limited.

Reduced Infrastructure Cost:

= Fewer data transmissions lead to lower costs for cloud
services and bandwidth, making loT solutions more
economical.

Removes Dependence on Cloud Processing:

= Without offline capabilities, devices rely on stable
internet connectivity, which can lead to downtime and
reduced effectiveness in areas with poor connectivity.

Lower Risk of Data Loss:

= Unstable connections can result in data being lost or
corrupted during transmission, compromising the
integrity of the information and potentially leading to
poor decisions.
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Lowering Costs to Make Al/ML More Accessible

Affordable Hardware:

= Advancements in technology have created cheaper, more
efficient hardware like MCUs with accelerators for running
AI/ML algorithms, reducing initial investments and
broadening application possibilities.

Wider Adoption:

= More entities can integrate Al/ML into their operations,
enhancing innovation and competition across sectors.

Diverse Applications:

= Smaller companies and startups can leverage Al/ML for
various applications, from automation to data analysis,
driving economic growth.

Reduced Operating Expenses:

= Streamlined algorithms and optimized hardware lead to
lower energy consumption and maintenance costs,
decreasing ongoing operational expenses.

Increased ROI:

= Lower recurring costs improve the return on investment for
Al/ML projects, making them more attractive for businesses.

Sustainability:

* Reduced energy and operational costs contribute to more
sustainable practices, appealing to environmentally
conscious organizations.
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Optimized Performance for Low Power Devices

Compact Design:

= Lower power requirements enable smaller batteries or energy storage
solutions, leading to more compact device designs, which is crucial in
space-limited applications like wearables and small sensors.

Efficient Algorithms:

= Edge AI/ML models are optimized for resource-constrained environments
through techniques like quantization and pruning, reducing computational
complexity and lowering energy consumption.

Adaptive Sampling:

= Edge devices use adaptive sampling to collect and process data only
when needed, minimizing unnecessary computations and data transfers,
thereby conserving power.

Extended Battery Life:

* Reduced power consumption results in longer battery life, decreasing the
need for replacements or recharging, which lowers maintenance efforts

and costs, enhancing user-friendliness.

Network Efficiency:

* Low-power devices can operate effectively in diverse environments and
network conditions, enabling scalable 10T solutions without overwhelming
infrastructure.

= Enhanced Scalability:

= Efficient Resource Utilization, local processing reduces the need for
centralized resources, allowing for more 10T devices to be deployed
without overwhelming network infrastructure.
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Adding Local Acceleration for Al/ML
Inferencing
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MVP Math library

Accelerate and do more efficient linear algebra operations with CortexM only
internal MVP subsystem s
. . . CMSIS CMSIS

Math APIs (alternative to CMSIS_DSP) available in GSDK 32 cpu- 16 cpu-

VECTOR OPERATIONS MATRIX OPERATIONS Matrix dims. __cycles  cycles instr ___ stalls
2x2 2x2 226 304 403 8 0

* Vector Add e Matrix Initialize 4x2 2x4 602 913 424 32 0
* Vector Absolute Value *  Matrix Multiply 6x2 2x6 1210 1921 464 72 0
* Vector Clip *  Matrix Scale 8x2 2x8 2050 3321 516 128 0
* Vector Dot Product . Matrix Sub 10x2 2x10 3122 5113 592 200 0
» Vector Multiply . I\/Iatr@x Tran'spose 12x2 %12 4426 7297 676 288 0
* Vector Negate . Matr!x Multiply Vector 14x2 %14 5962 0873 784 392 0
: ngg; gctf;lit E:/Ig::r))(lg? f\j/latrix Multiply 16x2 2x16 7730] 12841 904 512 0
* Vector Sub +  Complex Matrix Transpose 18x2 2x18 9730] 16201 1036 648 0
. Complex Vector Conjugate 20x2 2x20 11962 19953 1192 800 0
. Complex Vector Dot Product 20x4  4x20 17962 27956 1593 1200 1
o Comp|ex Vector Magmtu de 20x6 6x20 23742 39956 2193 1600 201
* Complex Vector Magnitude Squared 20x8 8x20 27562 47556 2793 2000 400
« Complex Vector Multiply 20x10  10x20 33162 59556 3393 2400 601
+ Complex Vector Multiply Real 20x12  12x20 37162 67156 3993 2800 801
* Vector Copy 20x14  14x20 42762 79156 4593 3200 1000
* VectorFill 20x16  16x20 46762 86756 5193 3600 1201

v' Faster and more efficient execution of many algorithms with large 20x18  |18x20 2362) 98756| 5793] 4000| 1401
data for example filtering algorithms 20x20  20x20 56362 106356 6393 4400 1600

v' Saving CPU cycles, saving power, resulting longer battery life U

v' Option to win sockets against faster CPUs ~ 9x less cycles
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Benefits of the MVP ML Hardware Accelerator

Dedicated ML computing subsystem next to the CPU: Matrix Vector Processor (MVP)
Optimized MVP to accelerate ML inferencing with a lot of processing power offloading the CPU

Up to 8x faster inferencing over Cortex-M (see below perf. benchmark)

Up to 6x lower power for inferencing (see below perf. benchmark)

Dedicated OPNs for MVP accelerated parts > EFR32MG24BJ2]... or [3]

Performance data with ML hardware accelerator vs. pure SW on CortexM*

Inferencing time (ms) Power consumption (uJ)
AD F AD
vww [ — VW
KWS [=— KWS s
0 200 400 600 800 1000 0 1000 2000 3000 4000 5000 6000
mCortexM mWith ML accelerator CortexM  ®With ML accelerator

*Standardized performance benchmark validated by independent benchmarking body MLCommons.org. Published in MLPerf Tiny v1.0. ML
Results are for inferencing only (not for the complete application). You can refer to MLCommons as validated results- Commons

12 © Silicon Laboratories Inc. All rights reserved. @ works with | &= SILICON LABS



MVP — Matrix Vector Processor
Demo
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MVP — Matrix Vector Processor (Al/ML Accelerator)

Al/ML Hardware Accelerator Key Features

Matrix Processor Accelerates ML Inferences
= Multi-dimensional array operations

= Handles real and complex data

= Offloads MCU

Up to 8x faster inference over Cortex-M
= Lower latency

Up to 6x lower power for inferencing

SILICON LABS

= Longer battery life

MVP Math Library
= Can be used for non-ML applications

= AI/ML Hardware Accelerator enables efficient Edge ML
inferencing
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MVP Math Library API

MVP MATH LIBRARY API MVP MATH LIBRARY API
Vector Functions Matrix Functions

= sl_math_mvp_vector_clip_f16 = sl_math_mvp_matrix_mult_f16

= sl_math_mvp_complex_vector_dot_product_f16 = sl_math_mvp_matrix_scale_f16

= s|l_math_mvp_vector_copy f16 = sl_math_mvp_matrix_transpose_f16

= sl_math_mvp_vector_sub_f6 = sl_math_mvp_complex_matrix_transpose_f16

= sl_math_mvp_vector_mult_f16 * sl_math_mvp_matrix_add_f16

= sl_math_mvp_vector_abs_f16 *  sl_math_mvp_matrix_sub_f16

= sl_math_mvp_matrix_init_f16
SILICON LABS = sl _math_mvp_vector_scale f16 - P -

= sl_math_mvp_matrix_vector_mult_f16
= sl _math_mvp_vector_add_f16

= sl_math_mvp_complex_matrix_mult_f16

MVP

= s|_math_mvp_vector_add_i8
= s|_math_mvp_complex_vector_mult_real f16

= s|_math_mvp_complex_vector_mult_f16 Utility Functions
= sl_math_mvp_clear_errors

= s|l_math_mvp_vector_negate_f16

. . | h
= s|l_math_mvp_complex_vector_conjugate f16 sl_math_mvp_get_error

https://docs.silabs.com/d/platform- » sl_math_mvp_vector_fill_f16
compute-math/4.3/ = sl_math_mvp_complex_magnitude_squared_f16
= s|l_math_mvp_vector_dot_product_f16
= s|_math_mvp_clamp_i8

= sl _math_mvp_vector_offset f16
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Demo

MVP Math Library
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xG24-RB4186

= EFR32MG24B210F1536IM48
= +10dBm

= 1536kB Flash

= 256kB RAM

= MVP Equipped

WSTK
= SLWMB4002A

EFR32xG24 2.4 GHz 10 dBm Radio Board (BRD4186C Rev A00)

OVERVIEW EXAMPLE PROJECTS & DEMOS DOCUMENTATION COMPATIBLE TOOLS

Run a pre-compiled demo or create a new project based on a software example.

1 resources found

Filter on keywords

mp @ | Platform - Demonstrate the MVP math library
This example project shows how to use the MVP math library.
Demos .
View Project Documentation
Example Projects .
Solution Examples .
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288 printf("Fill matrix A with values:\n"};
289 input_a[@] = 1.0;

input_al[l] = 2.0;
input_al[2] = 3.0;

%)

]

P

292 input_al[3] = -4.6;
293 input_al[4] = 5.0;

input_al[5] = 6.0;
2 input_al[6] = 7.0;

input_al[7] = -8.6;
input_a[8] = 9.0;

input_al[9] = 10.6;

input_al[l1@] = 11.6@;

input_al[ll] = -12.60;

sl math_matrix _init f16(&matrix _a, 3, 4, input_a);
362 print_matrix(&matrix_a);

Demo

MVP Math Library Demo Multiply
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384 printf("Transpose matrix A into matrix B:\n");

385 sl math_matrix _init f16(&matrix b, 4, 3, input _b);

306 sl math_mvp matrix_transpose flo(&matrix_a, &matrix b);
387 print_matrix(&matrix b);

389 printf("Multiply matrix A with matrix B:\n");

316 sl math_matrix_init f16(&matrix_z, 3, 3, output);

311 sl math_mvp matrix mult fl16(&matrix_a, &matrix b, &matrix z);
312 print_matrix(&matrix_z);
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Demo

MVP Math Library Demo Output
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T COM4 - Tera Term VT

File Edit Setup Control Window Help

r functions
will work for matrixes as well.

Fill vector A with 1.8:

¢ 1.88>, < 1.88> ¢ 1.88>, < 1.88>, ¢ 1.88>, < 1.88>,
Fill vector B with —3.8:

¢ -3.88>. < -3.88>, < -3.88>. < -3.88>, ( -3.88>., < -3.88>,.
Add vector A and B:

¢ -2.88>, ( -2.88>, < -2.88>, < -2.88>, ( -2.88>, <C -2.88>,

F111 vector A with complex values:
1.88. 2.881. [ 3.8, -4.881. [ 5.868, 6.60]1. 7.88. -8.801.
Complex conjugate vector A into vector B:
[ 1.88, 2,881, [ 3.88, 4.88]1, [ 5.88, .8a1, 7.88,
Complex nult cate vector A with vector B:
[ 5.88, 1, [ 25.88, ©.88]1., [ 61.88,
Rdd vector A to the result:
6.88. 2.881. —4.881. [ 66.80,
the result to -5..18:
6.88, 2.88]1., [ 18.88, —4.80]1, [ 198.868,

matrix A with values:
2 5]

<
<174

>.
(278.08) .,

Fill matrix A with complex values:
L [ 2.88, -2.58],
[ 6.80, -6.501.
[ 16.88.-18.581].
into matrix B:
[ 2.88., 2.581].
[ 6.88, 6.581],
-9.5801. [ 19.98, 18.581.
Complex tranﬂpone matrix B into matwrix C:
[ 1.88. —-1.58] [ 5.88, -5.581].
2 1. 6.80, 6.581.
7.88, -7.581,
8.88, B8.581.
with matrix

.00,
a.
f.001, 591.00.

L
L
[
L
L
L

Demonstrate that none of the previous math library fFunctions gave any errors or
exceptions:
Execution status: expected=8, actual=8
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Demo 30 31
Matrix Multiply Example -
= [1x10 + 2x20 + 3x30 1x11 + 2x21 + 3x31
4x10 + 5x20 + 6x30 4x11 + 5x21 + 6x31

10+40+90 11+42+93 — | 140 146
40+100+180 44+105+186 320 335
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55 //Variables for RGL matrix math
56 static floatle t rel input_al[4][4];
57 static floatle t rel input b[4][4];
58 static floatle t rel output[4][4];
101=void rgl_fill_matrix_b (void)
77=-void rgl_fill_matrix_a (void) 182 {
78 { 183 //ROW © Fill
79  //ROW @ Fill 194  rgl_input _b[@][0] = 1.00;
30 rel input_a[@][e] = 1.00; 185 rel _input_b[®][1] = 5.00;
81 rel input _a[@][1] = 2.00; 106 rel input b[©][2] = 9.00;
DemO 82 rgl input_a[@][2] = 3.00; 107
Matrix Multiply Example - Initialization 83 rgl_input_a[@][3] = -4.00; _[168  //ROW 1 Fill
84 INit| 102 rgl_input_b[1][0] = 2.00;
85 //ROW 1 Fill 110 rgl_input b[1][1] = 6.00;
86 rel input_a[1][@] = 5.00; 111 rel _input_b[1][2] = 10.00;
87 rel input _a[1][1] = 6.00; 112
38 rel input_a[l1][2] = 7.00; 113 //ROW 2 Fill
89 rel input a[1][3] = -8.00; 114 rel input b[2][0] = 32.00;
90 115 rel _input_b[2][1] = 7.00;
91  //ROW 2 Fill 116 rgl_input b[2][2] = 11.00;
92 rel input_a[2][@] = 9.00; 117
93 rel input a[2][1] = 10.00; 118 //ROW 3 Fill
94 rel input_a[2][2] = 11.00; 119 regl _input_b[3][8] = -4.00;
95 rel input _a[2][3] = -12.00; 120 rel input b[3][1] = -8.00;
96 } 121 regl input b[3][2] = -12.08;
122 }

20 © Silicon Laboratories Inc. All rights reserved.
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Demo

Matrix Multiply Example — Multiply & Print
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152
153
154
155
156
157
158

159

{

for (int i = 8; i < num_rows_a; i++)
{
for(int j = 8; j < num_cols_b; j++)
{
rgl output[i][j] = @;
for(int k = ©; k < num_rows_b; k++)

{
¥

rgl_output[i][Jj] += rgl_input_al[i][k] * rgl_input_bl[k][]];

¥
¥

164=

I
L e I (R o e ey ot I o T v T o T o o
& WD
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void rgl_print_output_matrix (int num_rows, int num_cols)

{
floatle t my_data;
printf("Output of Matrix Multiply.\n"};
for (int r = ©; r < num_rows; r++)
{
for(int ¢ = @; ¢ < num_cols; c++)
{
my_data = rgl_output[r][c];
printf("(%c.2f), ", my data);
¥
printf("\n");
¥

=
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62-void app_process_action(void)

63 {

64  //printf("\n");

65 //printf("Fill matrix A with values:\n"};
66 input_a[@] = 1.6;

67 input_a[l] = 2.0;

68 input_a[2] = 3.6;

69 input_a[3] = -4.0;

70 input_a[4] = 5.0;

1 input_a[5] = 6.6;
input_a[6] = 7.0;
input_a[7] = -8.9;
input_a[8] = 9.6;
input_a[9] = 10.0;

input_a[1@] = 11.9;

input_a[11] = -12.0;

sl math_matrix_init_fl16(&matrix_a, 3, 4, input_a);
//print_matrix(&matrix_a);

== I = R S

Demo

Matrix Multiply Example — Compare
Functions

//printf("Transpose matrix A into matrix B:\n");
s1 math_matrix_init fl6(&matrix b, 4, 3, input_b);

sl math mvp matrix transpose_flﬁ(&matrix_a, &matrix_b);

S/printf("Multiply matrix A with matrix B:\n");

sl math_matrix_init_f16(&matrix_z, 3, 3, output);

GPIO PinQutSet (gpioPortB , LED@);

s1 math_mvp_matrix_mult fl6(&matrix_a, &matrix_ b, &matrix z);
GPIO_PinOutClear (gpioPortB , LED@);

//print_matrix(&matrix z);

[s> Y =T« =T = VR W, R S WUy )

//Test RGL matrix multiply

rgl fill matrix_a();

rgl fill matrix_b();

GPIO_PinOutSet (gpioPortB , LED1);
rgl multiply matrix(3, 4, 4, 3);
GPIO_PinOQutClear (gpioPortB , LED1);
rgl_print_output_matrix (3, 3);

© WO WD LD WD WD WD WD LD WD WD 00 00 0O 0O 00 00 00 0O 00 00 = w

[~V == T = YR W, [ S WUy N}

Uutput of Matrix Multiply.
C 78. . €1168.88>

(174.88>, <(278.
(278. {446 .8
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Matrix Multiply - RGL vs MVP
Performance

RGL Matrix
Multiply — 23uS
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Thank You
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