
Simplifying IoT Development

with an RTOS

Matt Gordon

Sr. Product Manager, RTOS and SW Platform

A High-Level RTOS Introduction

Real-Time Operating System (RTOS)

Framework for writing multi-task applications

▪ Alternative to bare-metal, or super-loop, architecture

Central component is a kernel

▪ First and foremost, a task scheduler

▪ Tends to be very small (<15 kBytes of code)

RTOS may include additional software

▪ File system, GUI, protocol stacks, drivers, etc.

▪ All components generally lightweight, efficient

Differs from desktop and mobile OSes

▪ Written for resource-constrained devices

▪ Often delivered as source code and built with application

▪ MMU is usually not a requirement

▪ In some cases, there is no user/kernel mode distinction

Application Code

File

System

Kernel

Communication

Stacks
GUI

Task 1 Task 2 Task n

What Is the Impact of Using an RTOS?

Advantages

Logical framework for SW development

▪ Application divided into prioritized tasks

▪ Easy to assign tasks to different developers

▪ Add low-priority tasks w/o impact to high-priority tasks

Reuse of existing app code

▪ For popular RTOSes, large amounts of examples exist

Community support

▪ Other users may have tips and tricks

Mitigate HW complexity

▪ Built in support for power mgmt., other HW features

Disadvantages

Learning curve

▪ New APIs and, in some cases, development environment

Overhead

▪ Occupies Flash and RAM

▪ Consumes small portion of CPU’s cycles

Example Application 1 (No Kernel)

Simplified USB device

▪ Goal is to receive and respond to USB packets

ISR is triggered by packet reception

▪ Packet not fully processed in ISR

▪ Flag variable is set for USB_Packet()

USB_Packet() called periodically from main()

▪ Responsible for processing packet

▪ Frequency depends on contents of main()

void USB_ISR (void)

{

 Clear HW bit;

 Set flag variable;

 …

}

int main (void)

{

 while (1) {

 USB_Packet();

 ...

 }

}

void USB_Packet (void)

{

 Check flag variable;

 Process packet;

}

ISR

Main Loop

Simplified USB device

▪ Goal is to receive and respond to USB packets

ISR is triggered by packet reception

▪ Packet not fully processed in ISR

▪ Flag variable is set for USB_Packet()

USB_Packet() called periodically from main()

▪ Responsible for processing packet

▪ Frequency depends on contents of main()

Execution Diagram 1 (No Kernel)

ISRs

main()

Time

USB_ISR()

USB_Packet()

Packet

received

Packet

processed

Example Application 2 (Kernel-Based)

Same objective as Example 1

▪ Receive and respond to USB packets

ISR is triggered by packet reception

▪ Packet not fully processed in ISR

▪ Kernel function used to signal task

Kernel enables USB task based on ISR signal

▪ May run immediately after ISR

▪ Kernel runs other tasks while USB_Task() waits

▪ Lower priority tasks do not impact packet response time

void USB_ISR (void)

{

 Clear HW bit;

 Signal task;

 …

}

void USB_Task (void* task_arg)

{

 while (1) {

 Wait for signal;

 Process packet;

 ...

 }

}

...

ISR

Tasks (Managed by the Kernel)

Same objective as Example 1

▪ Receive and respond to USB packets

ISR is triggered by packet reception

▪ Packet not fully processed in ISR

▪ Kernel function used to signal task

Kernel enables USB task based on ISR signal

▪ May run immediately after ISR

▪ Kernel runs other tasks while USB_Task() waits

▪ Lower priority tasks do not impact packet response time

Execution Diagram 2 (Kernel-Based)

USB_ISR()

Kernel

Scheduler

Packet

processed
ISRs

Task B

Task A

USB_Task()

Packet

received

Full-Featured RTOS-Based Platforms

In the past, “RTOS” and “kernel” tended to be used interchangeably in the embedded space

▪ Developers moved to an RTOS primarily for multi-task scheduling

As RTOS adoption has expanded, so have the capabilities of the typical RTOS

▪ Commercial RTOS providers have for years offered their kernels alongside various stacks, middleware

▪ Open-source RTOSes are now the norm and are often, likewise, combined with other software components

▪ In many cases, hardware providers, like Silicon Labs, combine an RTOS with a broader software platform

Stacks, services, and middleware components can substantially accelerate development time

▪ Eliminate the need for application developers to write thousands of lines of complex code

▪ Make it easier to leverage the full potential of power hardware components

Beyond the Kernel: Power Manager

Coordinates system & app power needs

▪ Receives EM requirements from drivers, stacks, etc.

▪ Selects appropriate EM based on input

▪ Sends EM commands to the device

Enables custom code on transitions

▪ Various callbacks provided to application

Controls power-hungry resources

▪ Default state for clocks after certain events

Part of Silicon Lab’s software platform

▪ Integrated with stacks, other system code

A
p

p
 C

o
d

e
S

iS
D

K
H

a
rd

w
a
re

EM

Req

EM

Req

EM Req

EM Command

Callback

Task 2Task 1

Power

Manager

EFR32

Wireless

Stacks

Beyond the Kernel: Memory Manager

Simplest versions replace malloc()

▪ Enable dynamic memory allocation

▪ Generally use fixed-size blocks

Silicon Labs offers additional features

▪ Distinguishes long-term/short-term storage

▪ Abstracts details of underlying memory

▪ Facilitates shutdown of unused RAM banks

▪ Provides app code with detailed statistics

Part of Silicon Labs’ software platform

▪ Integrated with stacks, other system code

A
p

p
 C

o
d

e
S

iS
D

K
H

a
rd

w
a
re

sl_memory_reserve_block()

sl_malloc()

Task 2Task 1

Memory

Manager

RAM

Wireless

Stacks

Bank 1 Bank 2 Bank 3 Bank 4

Silicon Labs RTOS Option #1: FreeRTOS

Highly popular option with >20-year track record

▪ Acquired by Amazon in 2017

Kernel is lightweight and efficient

▪ Supports semaphores, mutexes, queues, other common kernel features

▪ 5-10 kBytes of Flash and <1 kByte RAM (excluding tasks stacks)

▪ Context switch time ~100 CPU cycles on Cortex-M

Various connectivity modules implemented for use alongside kernel

▪ Added following Amazon acquisition

Fully integrated into Silicon Labs SiSDK

▪ Wireless stacks leverage FreeRTOS functionality to ensure optimal performance in multi-task systems

▪ Various Amazon connectivity modules also included in SDK

Silicon Labs RTOS Option #2: Zephyr

Main Zephyr

Repo

Modules

 (External Projects)

G
it

H
u

b
:

ze
p
h
y
rp

ro
je

c
t-

rt
o
s

S
o

u
rc

e
 C

o
d

e
D

e
v
 E

n
v

Kernel

Config Files, Build Scripts, etc.

west (Meta Tool)

Stacks/Services:

BT (BLE, Mesh),

TCP/IP, Power

Mgr, NVS, etc.

Additional

Stacks/Services:

OpenThread,

TLS, TF-M,

SecureBoot, fatfs,

etc.

3rd-Party HALsDrivers, Ports

Established in 2016 by Linux Foundation

▪ Open-source RTOS with active community

▪ Permissive (Apache 2.0) licensing

▪ Supported Financially by member companies

Combines kernel with full software platform

▪ Includes stacks, middleware, drivers, etc.

▪ CL development environment based on west tool

Work ongoing to expand Silicon Labs support

▪ Silicon Labs joined as Zephyr member in 2021

▪ Handful of BLE projects released over past few years

▪ New, full-featured projects coming in 2025

▪ Focus on BLE and Wi-Fi

▪ Projects both in public repo and downstream fork

Getting Started with an RTOS on Silicon Labs HW

FreeRTOS

1. Select a HW kit suitable for your project

2. Download and install Simplicity Studio

3. Browse for FreeRTOS projects for your HW

▪ FreeRTOS can also be added via Proj. Configurator

▪ Additional info:

https://www.silabs.com/developers/rtos/freertos

Zephyr

https://www.silabs.com/developers/rtos/freertos

Thank You

Conclusion

An RTOS is a system software component that helps manage the underlying hardware

▪ Key component is a multi-task kernel

▪ RTOSes may also incorporate drivers, middleware, and stacks

Although there is a learning curve, an RTOS can be a beneficial addition to an IoT project

▪ Kernel enables efficient use of CPU cycles

▪ Stacks and middleware components simplify work of application developers

Silicon Labs’ RTOS support policy covers both FreeRTOS and Zephyr

▪ FreeRTOS is fully integrated into SiSDK and used by Silicon Labs’ wireless stack

▪ Expanded Zephyr support is under development and will be offered through Zephyr repo and downstream fork

Getting started with an RTOS may require just a few minutes of time!

▪ Addition of FreeRTOS to projects automated in Simplicity Studio with configurator

▪ Zephyr support will be based on existing Getting Started Guide

	Slide 1
	Slide 2: A High-Level RTOS Introduction
	Slide 3: What Is the Impact of Using an RTOS?
	Slide 4: Example Application 1 (No Kernel)
	Slide 5: Execution Diagram 1 (No Kernel)
	Slide 6: Example Application 2 (Kernel-Based)
	Slide 7: Execution Diagram 2 (Kernel-Based)
	Slide 8: Full-Featured RTOS-Based Platforms
	Slide 9: Beyond the Kernel: Power Manager
	Slide 10: Beyond the Kernel: Memory Manager
	Slide 11: Silicon Labs RTOS Option #1: FreeRTOS
	Slide 12: Silicon Labs RTOS Option #2: Zephyr
	Slide 13: Getting Started with an RTOS on Silicon Labs HW
	Slide 14
	Slide 15: Conclusion

