LR102

# Technical Comparison of Wi-SUN, Z-Wave LR, & Amazon Sidewalk for Smart City and IoT Applications

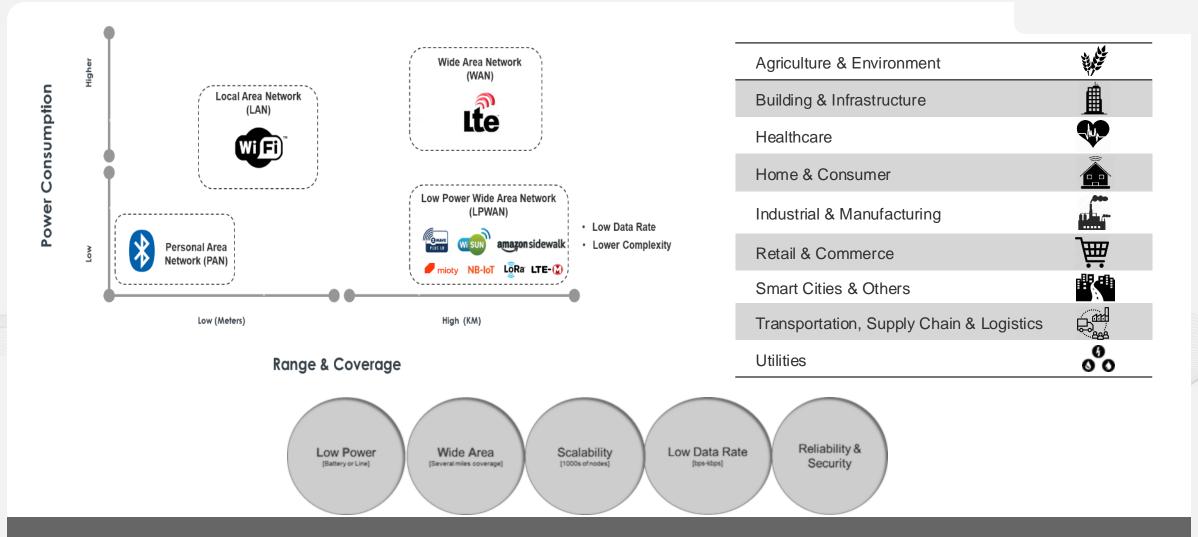


Abitzen Xavier
Senior Product Manager – Wi-SUN, Z-Wave & Amazon Sidewalk

SILICON LABS



# Agenda

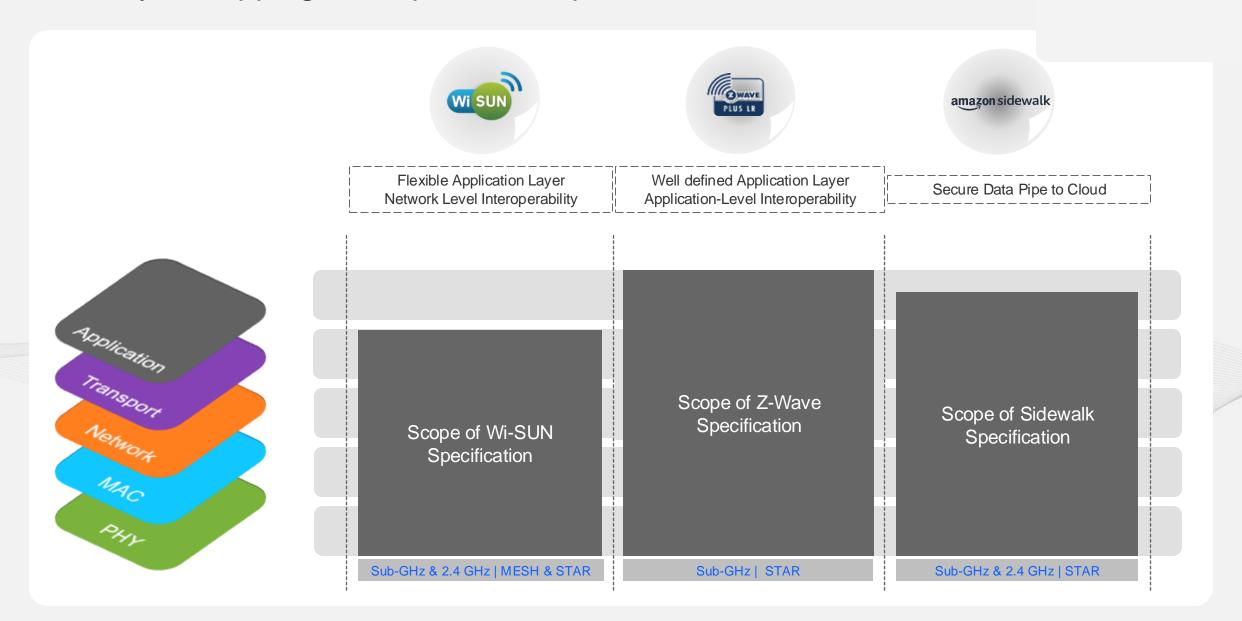

- **Target Markets**
- **Design Objectives**
- **Technology Overview** •
- Key Technical Attributes
- Silicon Labs Portfolio
- Antenna Design for IoT





amazon sidewalk

## **Quick Primer on LPWAN**

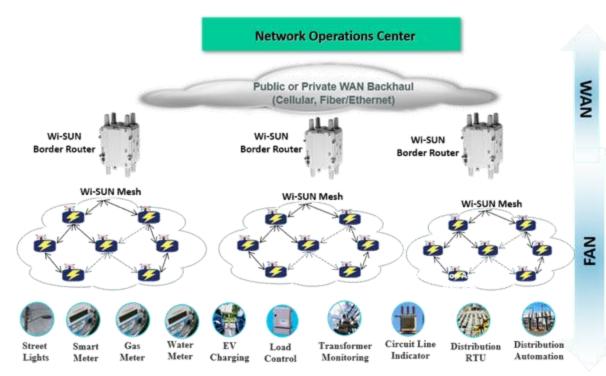



Each LPWAN technology focus on a target use case by addressing its unique requirements

# Three IoT solutions tailored for three distinct markets

|                         | Wi SUN                                                     | PLUS LR                                     | amazon sidewalk                                                  |
|-------------------------|------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------|
| Primary<br>MKT          | Smart Metering Smart City, Smart Energy, Smart Agriculture | Smart Home & Beyond  MDUs, Hospitality      | Generic LPWAN  Trackers, Telemetry, Appliances, Security Cameras |
| Primary<br>Objective    | Scalability & Flexible Data Rate [1,000,000s of Nodes]     | Longer Range<br>[Over a mile Line of Sight] | Coverage & "Free Network Access" [Nation Wide]                   |
| Additional<br>Objective | Re-use existing & proven standards                         | Ease of Use [SmartStart]                    | Community Network                                                |
|                         | Flexibility [Data rate, Modulation]                        | Low Power [Up to 10 Years]                  | Cost-Effectiveness                                               |
|                         | Interoperability [Certification]                           | Interoperability [Certification]            | Seamless Integration [AWS], Alexa                                |
|                         | Security [PKI, Certificates]                               | Security [S2V2]                             | Security & Privacy [Certificate]                                 |
|                         | Reliability & Robustness [MESH]                            | Reliability & Robustness [sub-GHz]          | Reliability & Robustness [Redundancy]                            |

# OSI Layer Mapping & Scope of each protocol




Wi-SUN





## Brief Introduction to Wi-SUN



Wi-SUN™ Alliance © 2023





Countries Represented

#### Wi-SUN [Wireless Smart Ubiquitous Network]

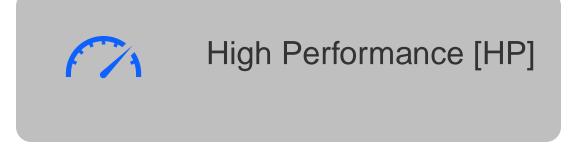
- Standards based (IEEE and IETF)
- Wireless IPv6 mesh network. Self forming/self healing
- For large geography Industrial IoT field applications
- Designed with enterprise class security

#### Field Area Network [FAN] Standards Evolution

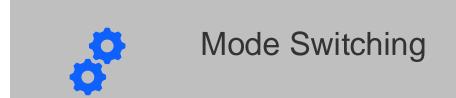
- FAN Spec describes how to implement a device for FAN communication
- The FAN Certification Program ensures interoperability

#### FAN1.0 [Production] - 105 Certified Products

- For Line Powered Devices [Electric Meters, Street Lights etc..]
- FSK only modulation, Multiple Data Rates


#### FAN1.1 [Latest Specification]

- Added OFDM modulation, Data rate up to 2.4 Mbps
- Added support for Battery Powered Devices [Water & Gas Meters, Sensors]


#### FAN1.2 [Concept]

Certificate enrolment, Time Reference Distribution, Network Management

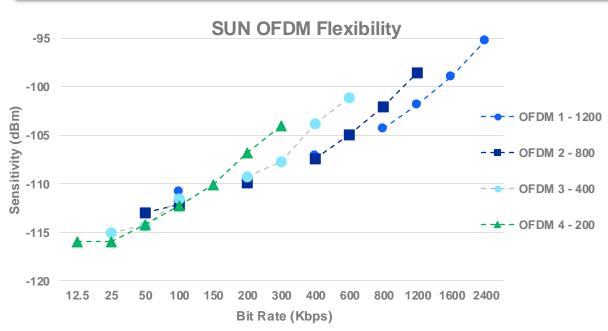
# Wi-SUN FAN1.1 High Level Features







#### FAN1.1 High Performance [HP]


- High throughput OFDM PHYs, Up to 2.4 Mbps
- Recommended SoC : FG25

- FAN1.1 Low Energy [LE]
  - For battery operated devices
  - Recommended SoC: FG28

- Modulation and Data Rate Switching
  - Dynamic negotiation of modulation & data rate based on application requirement & channel condition

# High Performance through OFDM Modulation, Multiple Data Rates & Channel BW

| OFDM option | Bandwidth (kHz) | Main<br>regions | Bit rates (kbps)       | Sensitivity<br>(dBm) |
|-------------|-----------------|-----------------|------------------------|----------------------|
| 1           | 1200            | NA, BZ          | 100 to 2400<br>(3600*) | -111 to -95          |
| 2           | 800             | NA, BZ, JP      | 50 to 1200<br>(1800*)  | -113 to -98          |
| 3           | 400             | NA, BZ, JP      | 25 to 600<br>(900*)    | -115 to -101         |
| 4           | 200             | NA, BZ, JP, EU  | 12.5 to 300<br>(450*)  | -116 to -104         |



#### Example of Tx duration for a 1500-Byte PHY Payload

| bandwidth<br>(KHz) | modulation  | bit rate<br>(kbps) | Tx duration (ms) |  |
|--------------------|-------------|--------------------|------------------|--|
| (1112)             | FSK 1b      | 50                 | 241.9            |  |
|                    | FSK 2a      | 100                | 121.0            |  |
| 200                | OFDM 4 MCS3 | 100                | 121.6            |  |
|                    | OFDM 4 MCS6 | 300                | 41.5             |  |
|                    | OFDM 4 MCS7 | 450                | 28.2             |  |
|                    | FSK 3       | 150                | 80.9             |  |
|                    | FSK 4a      | 200                | 60.6             |  |
| 400                | OFDM 3 MCS3 | 200                | 61.6             |  |
|                    | OFDM 3 MCS6 | 600                | 21.5             |  |
|                    | OFDM 3 MCS7 | 900                | 14.9             |  |
| 600                | FSK 5       | 300                | 40.7             |  |
|                    | OFDM 2 MCS3 | 400                | 31.6             |  |
| 800                | OFDM 2 MCS6 | 1200               | 11.5             |  |
|                    | OFDM 2 MCS7 | 1800               | 8.2              |  |
|                    | OFDM 1 MCS3 | 800                | 16.2             |  |
| 1200               | OFDM 1 MCS6 | 2400               | 6.1              |  |
|                    | OFDM 1 MCS7 | 3600               | 4.4              |  |



**OFDM FSK DSSS-OQPSK** Mode-Switch **Concurrent Detection** 

## Low Power Features in FAN1.1 LFN



#### LFN do not participate in the MESH

FFN participate in the MESH on behalf of LFN This allows LFN to limit its TX & RX to save battery life



#### LFN "sleeps" most of the time

LFNs turn their receiver on only for a brief to check for data from FFN

## LFN keys are long lived



Security process, key acquisition and maintenance are expensive and having long lived keys allow LFN to save power

## LFN Battery Life specification in FAN1.1 spec.

- LFN battery life of 20 years (suggested battery of 3 volts with 2 AHr capacity).
- The MAC MUST support a < 2-minute response time for LFNs</li>
- EFR32FG28 offer best in class FAN1.1 low power performance

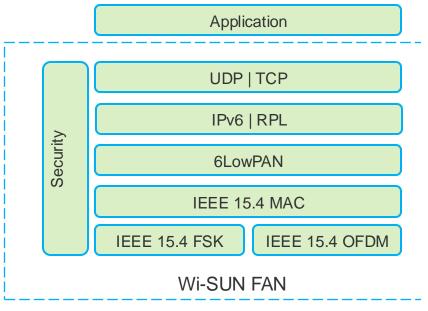


Sleep Current (EM2, 16 kB ret) 1.6 µA TX Current @ +14 dBm (915 MHz) 25 mA TX Current @ +20 dBm (915 MHz) 89 mA RX Current (915 MHz GFSK) 4.3 mA (50 kbps)

### LFN will stay in EM2 (1.6 µA) state while sleeping

Note - LFN is the technical/spec terminology and LE is the marketing / branding




## Wi-SUN FAN1.1 Stack

#### **IPv6 Protocol**

- **6LowPAN** Adaptation
- RPL Routing
- **Unicast & Multicast**
- DHCPv6

#### Security

- PKI & Certificate based
- **EAP-TLS/PKI** Authentication
- 802.11i Key Management
- AEC-CCM 128b Encryption



#### MAC

- Discovery & Join
- Unicast, Multicast & Broadcast
- Frequency Hopping

#### PHY

- Sub-GHz & 2.4 GHz
  - Sub-GHz is popular
- Global Coverage
  - NA, JP, BZ, IN, EU, SG
- Multiple Modulations
  - FSK & OFDM
- Multiple Data Rates
  - 50 Kbps 2.4 Mbps

## Silicon Labs' Wi-SUN Product Portfolio

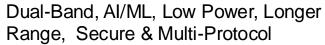
# eature ĹĹ So Memory Increasing



#### OFDM & FSK

- Wi-SUN
- Proprietary
- SecureVault
- +20 dBm
- · For BR & Routers
















- Wi-SUN
- · Z-Wave MESH & LR
- Proprietary
- Amazon Sidewalk
- SecureVault
- +20 dBm
- For BR, Routers & LFN

# Complete Solution

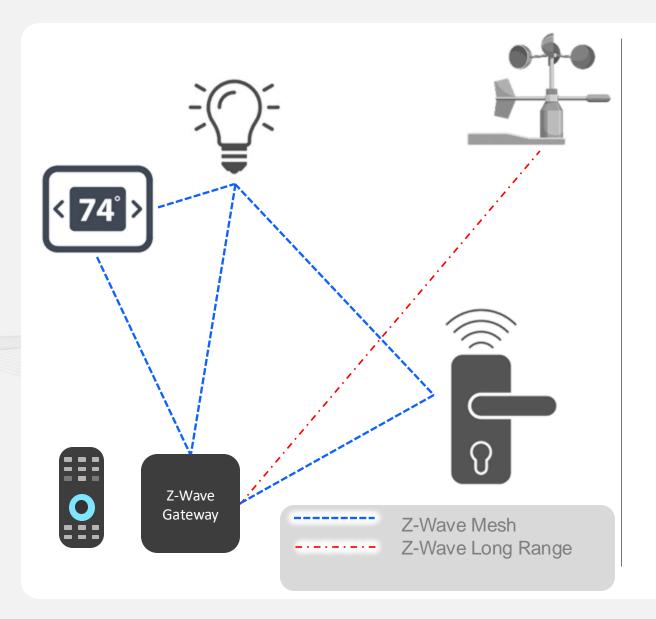
- Supports All Devices Types
  - Router, Border Router & LFN
- Supports All Modulations
  - OFDM, FSK & DSSS OQPSK
- Supports All Regions
  - US, JP, BZ, IN, EU, SG
- PHY & Profile Certification
  - FG25 is also a FAN1.1 PHY CTBU
- Wi-SUN FAN1.1 Stack
  - Out of the box support for Cisco **FND**

2023

2024

2025

2026


2027

2028



Z-Wave Long Range

# Brief Introduction to Z-Wave Long Range



New Long-Range channel in Z-Wave DSSS-OQPSK PHY; 100 kbps data rate Up to +30 dBm TX power [FCC 15.247]

Highly scalable up to 4000 nodes 12-bit address space

Optimized for longer battery life Dynamic power control to optimize battery life Multi year battery life on a coin cell

**STAR Topology** Lower latency due to direct link to GW

Backward compatibility Z-Wave MESH & Z-Wave LR can co-exists

# Technology behind the range and long battery life of Z-Wave Long Range

Range

- New DSSS-OQPSK Modulation
  - Uses BW>500kHz allows transmission to +30dBm/1w max per FCC 15.247
  - Better sensitivity compared FSK, again improving the range

Low Power

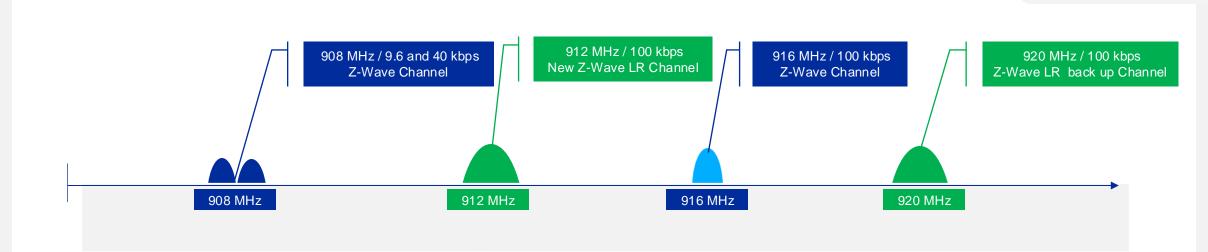
- Dynamic Transmit Power
  - Higher TX power needed for Range [+14 dBm, +20 dBm] can reduce battery life
  - To address this Z-Wave LR uses Dynamic TX power and optimize TX power

#### **Specification**

Range & Low Power - A combination of the specification & implementation

#### 800 Series

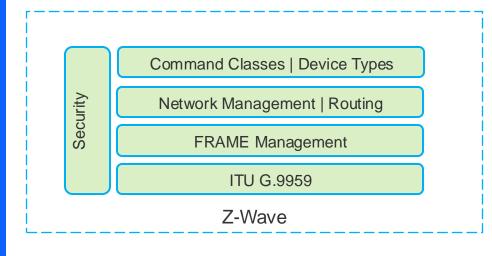
Range


- +20 dBm TX power with integrated PA
- -109.8 dBm sensitivity with integrated LNA
- ~130 dB Link budget offering over 1.5 miles outdoor LoS Range

Low Power

- 0.15 uA Sleep Current [EM3 with 16 KB RAM retention]
- 4.5 mA Receive Current [ @ at 3.3 V with DCDC]
- 25 mA TX Current [@ +14 dBm]

800 series offer the Lowest Power & Maximum Range Implementation of Z-Wave LR


# Z-Wave LR PHY and Channel details



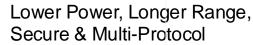
| PHY Details               |                    | Benefit |                                                                                                                                                                                 |  |
|---------------------------|--------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Modulation                | DSSS-OQPSK         | •       | Higher output power for longer range, Up to +30 dBm / 1w per FCC 15.247 Better sensitivity compared to FSK resulting in more range Better interference immunity compared to FSK |  |
| Frequency [North America] | 912 MHz or 920 MHz | •       | Primary and Secondary channels for channel agility Better network and blocker performance                                                                                       |  |
| Maximum Data Rate         | 100 kbps           | •       | Comparable timing to Z-Wave MESH allowing for backward compatibility                                                                                                            |  |
| Maximum output power      | +20 dBm            | •       | ZG23/28 offer +20 dBm with integrated PA for lower BoM & superior Range                                                                                                         |  |
| Link Budget               | 129.8 dB           | •       | Over a mile line of sight range                                                                                                                                                 |  |

# Z-Wave Long Range Stack

- **Application Layer** 
  - Application CMD classes
  - Transport CMD classes
  - Role Type & Device Type
  - DHCPv6
- Security S2v2
  - Diffie-Hellman key exchange
  - AES-128 Encryption



- MAC
  - Collision Avoidance
  - Acknowledged Frame Delivery
  - Frame Re-transmission
- PHY
  - Sub-GHz
    - 912 & 920 MHz
    - 800 MHz for EU
  - Global Coverage
    - NA & EU
  - **DSSS-OQPSK Modulation** 
    - 100 Kbps


## Silicon Labs' Z-Wave Product Portfolio











- Z-Wave MESH & LR
- Proprietary (SoC-Only)
- Amazon Sidewalk (SoC-Only)
- SecureVault
- +20 dBm (SoC-Only)
- · For Gateways & End Nodes











#### Dual-Band, Al/ML, Low Power, Longer Range, Secure & Multi-Protocol

- Z-Wave MESH & LR
- Proprietary
- Amazon Sidewalk
- Wi-SUN
- **BLE**
- SecureVault
- +20 dBm
- For Gateways & End Nodes

# Complete Solution

- Full Stack
  - Certified Sample Applications
- **Z-Wave Alliance Certification**
- Controller Reference Design
  - Unify SDK Protocol Controller

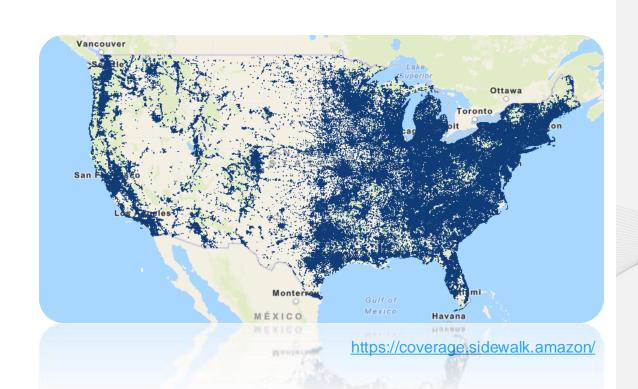
2023 2024 2025

2026

2027

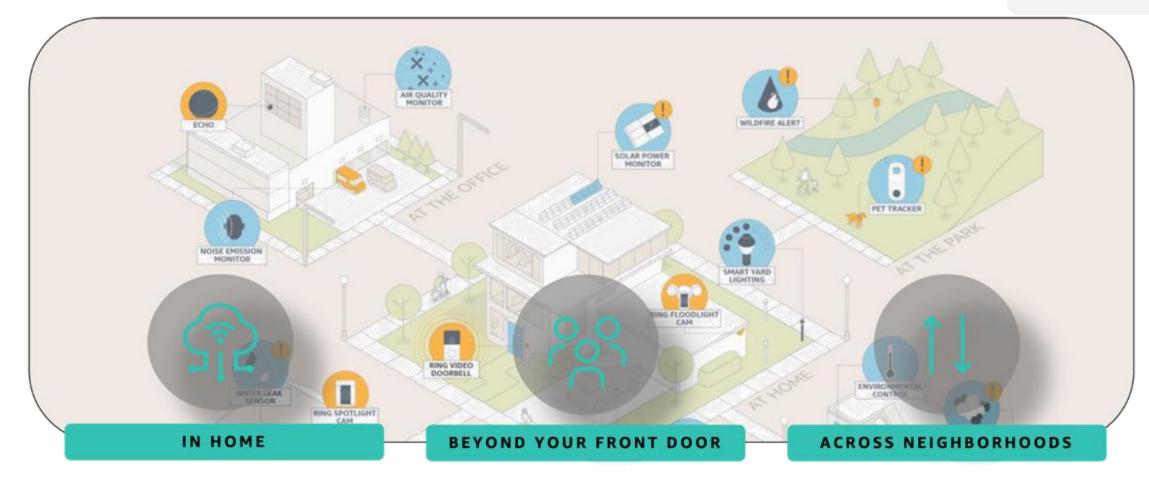
2028




Amazon Sidewalk

# Brief Introduction to Amazon Sidewalk

#### NETWORK BUILT BY THE COMMUNITY


# Over 90% of US population covered





- Public and crowd-sourced
- The Amazon Sidewalk network provides cloud connectivity in the US via Ring and Echo devices
- The Amazon Sidewalk AWS integration provides access to 200+ services such as Sage Maker

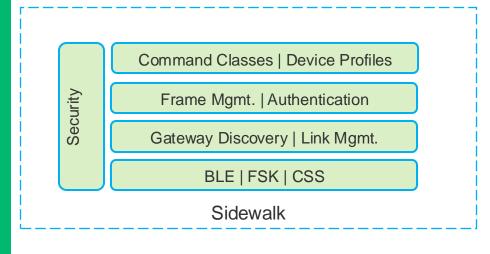
# **Amazon Sidewalk Connectivity**



BLE for battery & throughput

FSK for whole home & beyond

CSS for mobility & Wide Area Networking

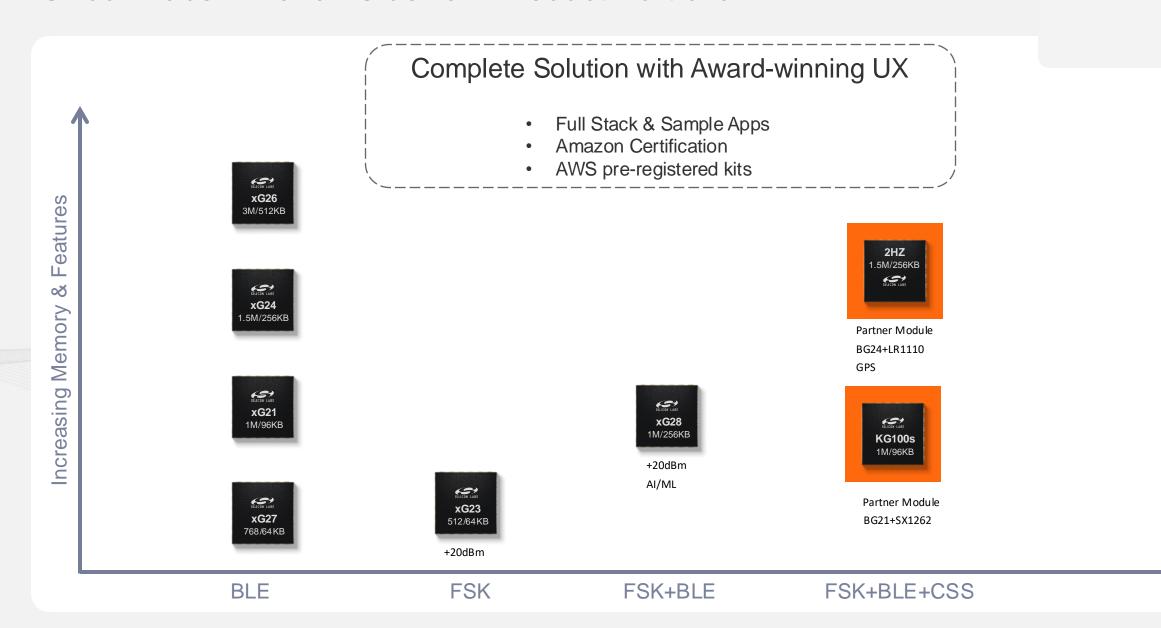

## Amazon Sidewalk Stack

#### **Application Layer**

- Application CMD classes
- Management CMD classes
- **Custom CMD classes**
- Metrics CMD classes
- Security CMD classes

#### Security

- Amazon Sidewalk's Public Key Infrastructure Certificate Authority system
- Encryption, device registration, authentication and authorization
- Ed25519 and p256r1 are used for keys and certificate generation.

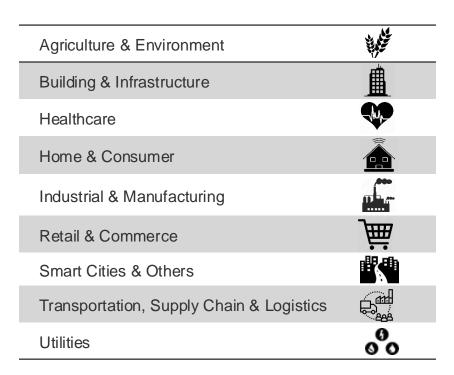



- Link & Network
  - Beacon frames
  - Message frames
  - Control Frames
  - Authentication
- PHYs
  - BLE 1Mbps
  - FSK 50 kbps
  - CSS 2 kbps

# **Automatic Multi-Link**



## Silicon Labs' Amazon Sidewalk Product Portfolio




Summary



# Summary & Re-cap

- Multiple market segments and use cases can be addressed with LPWAN technologies
- There is no single technology that address all requirements
- Wi-SUN, Z-Wave LR and Sidewalk focus on specific market segments and use cases.





# Summary & Re-cap









#### **Smart Metering**

Smart City, Smart Energy, Smart Agriculture



MDUs, Hospitality

#### **Generic LPWAN**

Trackers, Telemetry, Appliances, Security Cameras



Complete Solution SoCs, Full Stack, Sample Applications











**Development Tools** Studio, Radio Boards, Certification

These 3 technologies can address almost all use cases in the LPWAN space xG28 – All in one SoC for your LPWAN needs – Visit <u>www.silabs.com</u>



Q&A