### Presentation Will Begin Shortly

**4:00** 

## **ВLUETOOTH**

| FEB 29 <sup>TH</sup> | Small Bluetooth Devices - How to Minimize Size without Compromising Performance and Reliability |
|----------------------|-------------------------------------------------------------------------------------------------|
| APR 4 <sup>TH</sup>  | Bluetooth LE Application Development Journey                                                    |
| МАҮ 9тн              | Unboxing Silicon Labs' Latest Bluetooth SoC<br>for Energy Harvesting                            |
| JUN 13 <sup>TH</sup> | Explore Bluetooth Channel Sounding                                                              |



## Welcome

Unboxing Silicon Labs' Latest Bluetooth SoC for Energy Harvesting



## Introduction



#### Tristan Cool – Silicon Labs

 Tristan is a Product Marketing Manager on the Industrial IoT Team. Over the past 4 years, Tristan has been helping our leading asset tracking, condition monitoring and smart building customers migrate their designs to battery-less. Tristan's role is to advance the Ambient IoT / Energy Harvesting product roadmap.



#### Bruno Damien – e-peas

 Bruno is Marketing Director of Ecosystem and Partners at e-peas, leading the relation-ship with key partners involved in the implementation of energy harvesting solutions based upon e-peas products. He is a veteran of semiconductor industry having leading roles as Technical support, Sales director and Marketing Director at various major OEMs. Working for e-peas for the past 2 years.



## Agenda

**01** The Problem with Batteries..

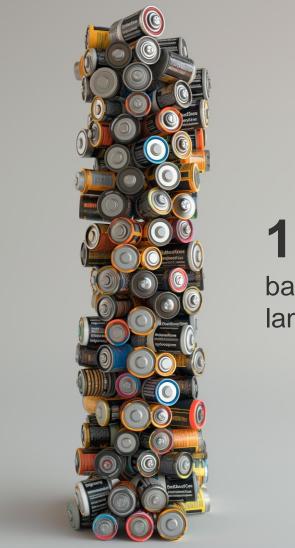
**02** Alternative energy sources for Ambient IoT

03 Unboxing xG22E

Resources: xG22E Explorer Kit e-peas Shields

05 Q&A

04


4 ©2024 Silicon Laboratories Inc. All rights reserved.



# The problem with batteries...

**Tristan Cool** 

### **The Problem with Batteries for IoT**



## 15 billion

batteries are thrown in land-fills every year

More than 15 billion batteries are thrown in land-fills around the world every year (900,000 tons of hazardous waste)

The average household purchases over 90 batteries annually most have much less than 10-year lifetime

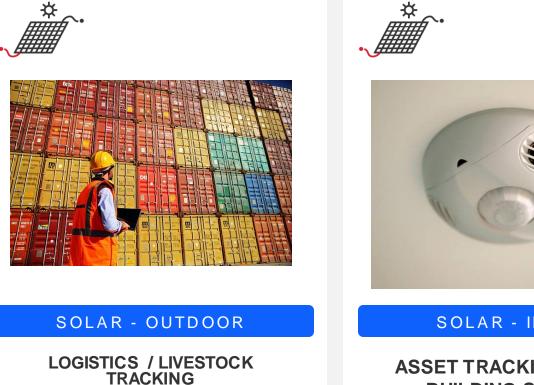
## Batteries are slowing down the growth of IoT

- 25 billion IoT devices predicted by 2025 would require 6 million battery replacements every day
- In industrial setting with 1,000 sensors, the annual replacement of over 350 batteries—typically exceeding one per day—incurs significant recurring costs, often surpassing the batteries' own price.
- IoT is compromised when sensor polling rate, payload size, transmission rate and range are lowered due to lack of power.
- Systems need to integrate energy awareness decision making



## **Battery regulations**




- National Electric Code (NEC) is introducing new requirements on battery collection and recycling as well as mandating the elimination of batteries in certain devices.
- **More and more countries** are following the movement (NEC US, NEC Europe, Japan, Australia, Canada)
- [17 AUG 2023] European Commission Batteries Regulation
- Biden-Harris Administration Announces \$62 Million to Lower Battery Recycling Costs Across the Nation
- These upcoming regulations impact IoT device design.
  - This is the beginning of a new era of IoT product development

Source:

https://www.lightnowblog.com/2023/05/2023-nec-prohibits-battery-only-wall-light-switches/ https://environment.ec.europa.eu/news/new-law-more-sustainable-circular-and-safe-batteries-enters-force-2023-08-17 en



## **Energy Harvest – Application Profiles**



- Bluetooth /Bluetooth Long Range
- 802.15.4 Mesh •
- 10 mW/cm<sup>2</sup> •





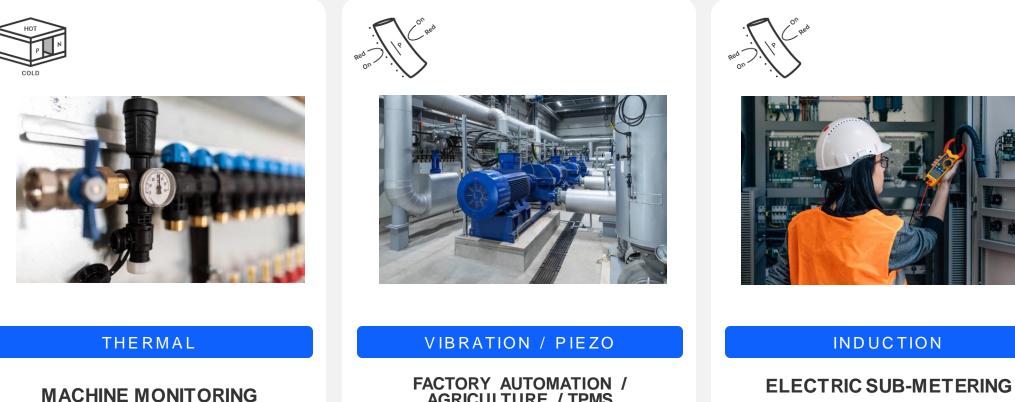
#### SOLAR - INDOOR

#### **ASSET TRACKING / SMART BUILDING SENSORS**

- Bluetooth •
- 802.15.4 Mesh •
- $10 \,\mu\text{W/cm}^2$ •






#### **KINETIC PULSE**

#### **SMART SWITCHES**

- Bluetooth / Bluetooth Mesh
- 802.15.4 Mesh •
- 120~300 µJ/press •



## **Energy Harvest – Application Profile**

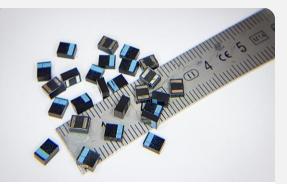


- Bluetooth / Bluetooth Mesh •
- 802.15.4 Mesh •
- 1-10 mW/cm<sup>2</sup>

## FACTORY AUTOMATION / AGRICULTURE / TPMS

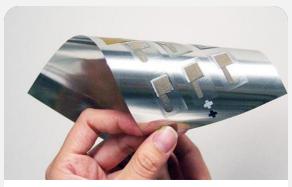
- Bluetooth •
- 802.15.4 Mesh •
- 100 µW/cm<sup>2</sup> •

- Zigbee Green Power
- 802.15.4 Mesh •
- 100 µW/cm<sup>2</sup> •




### **Alternative Battery/Storage**




#### **CONVENTIONAL BATTERY**

Environmentally harmful Lithium Nickel-Cadmium Nickel-Metal-Hydrate Silver Oxide 1.2~3V cells



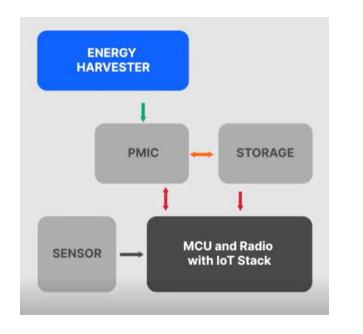
#### MICRO BATTERY

Solid-state design Embedded Surface-mount Customizable 2.2~3V cells

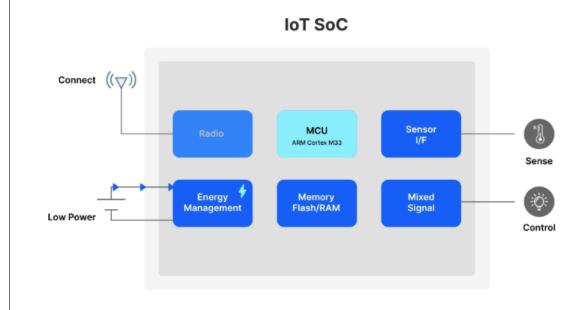


#### **PRINTED BATTERY**

Printed anode/cathode Pliable thin-film Customizable



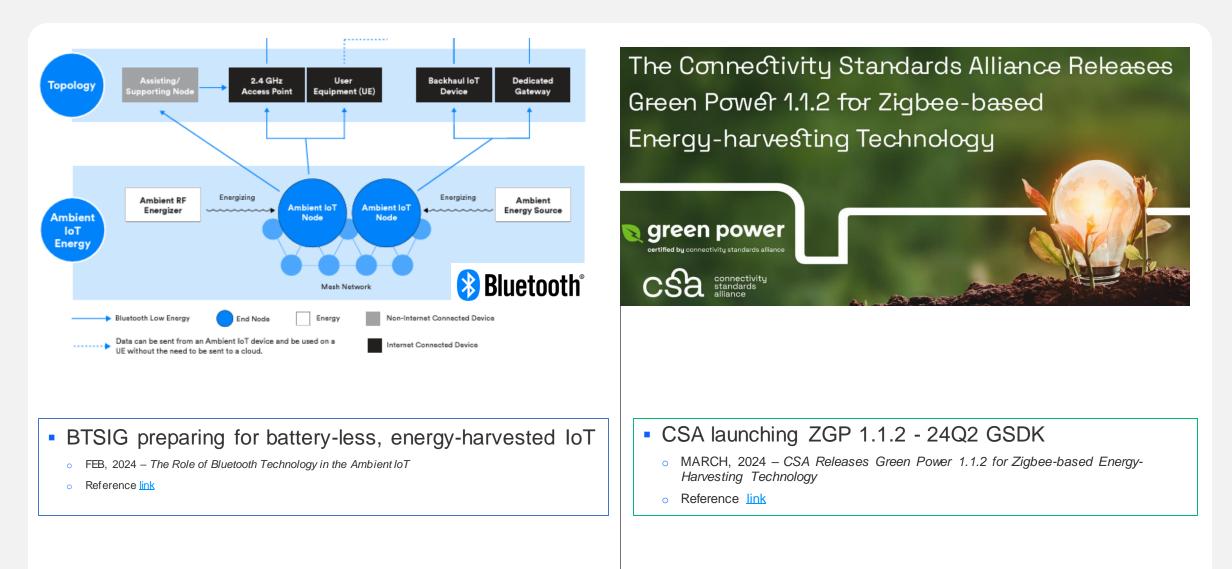

#### SUPER CAPACITORS


Environmentally friendly Quick energy delivery Several hours of selfdischarge



## **Understanding IoT Architectures for Energy Harvesting**



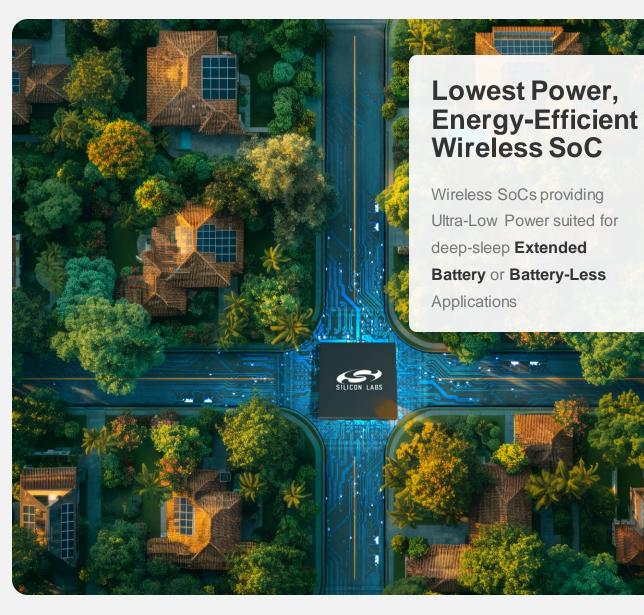

- Energy Harvester: harness ambient energy
- Storage: energy bank
- PMIC: power management and transformation
- MCU and Radio:
  - Application and communication
  - · energy-based decision making ; sleep and wake control



The IoT SoC Platform is responsible for:

- assessing available energy
- determining when to wake up peripheral systems
- executing system actions...or remain asleep.
- Managing communication payload and transmitting

## 'Ambient IoT' for 'Energy Harvesting'






## Unboxing xG22E

**Tristan Cool** 

## Introducing EFR32xG22E



#### Ultra-fast, Low-Energy cold-start

- Power on Reset (PoR) in 8ms
- · Consumes less than 150µJ
- Ultra-fast, Low-Energy deep sleep wake-up
  - EM4 wakeup in less than 1.83ms
  - Consumes 16.6µJ in wake-up energy
  - 10+ year coin cell battery operation for ultra-low power or extended storage applications
- Power-efficient energy mode transition
  - Optimized for smooth transitions in and out of energy modes
  - Mitigates current spikes or in-rush to prevent harm to batteries or alternate storage
- Reliable Wireless and Long Range
  - Multiprotocol 2.4 GHz wireless SoC with High-Performance RF
    - Bluetooth LE, Proprietary, Zigbee, and Zigbee Green Power
- Pin compatible with xG22 and xG27 SoCs
  - Pin compatible QFN32 and QFN40 packages for easy migration and rapid time to market



## xG22E: Ideal for Ultra-low Energy, Ambient IoT, and Energy-Harvesting



Bluetooth Proprietary
zigbee

## 5x5 QFN40 (26 GPIO), AEC-Q100

• 4x4 QFN32 (18 GPIO)

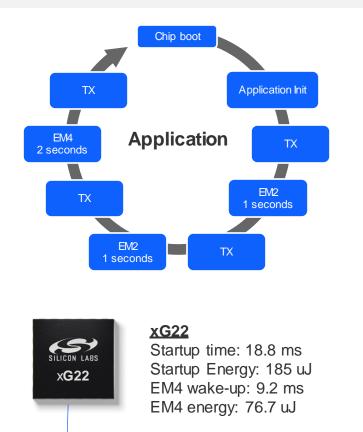
#### DIFFERENTIATED FEATURES

- Efficient, Low-Energy Cold Start
  - Boot-up time less than 8ms
  - Energy consumption under 150uJ
- Low-Energy Deep Sleep wake-up
  - Consuming less than 17uJ
- Power-efficient energy mode transition
  - Optimized to smoothly transition out of energy modes
  - Mitigates current spikes or inrush
- RFSense with OOK mode
  - Ultra low-power receive mode to wake-up MCU from EM2 or EM4
  - Results in longer battery life
- PLFRCO
  - Eliminates need for 32 KHz XTAL and lowers overall system cost
- 16-bit ADC
  - Up to 14-bit ENOB for better analog sensing

#### DEVICE SPECIFICATIONS

- High Sensitivity 2.4 GHz Radio
  - -Up to +6 dBm TX
  - -98.9 dBm RX @ BLE 1 Mbps
  - -106.7 dBm RX @ BLE 125 kbps
  - -102.3 dBm RX @ 15.4
- Efficient ARM® Cortex®-M33
  - Operating Frequency: Up to 76.8 MHz
  - 512kB Flash, 32kB RAM
  - Low Power
  - 27 µA/MHz
  - 3.4 mA TX @ 0 dBm
  - 2.5 mA RX (BLE 1 Mbps)
  - 1.4 µA EM2 sleeps
  - 0.17 µA EM4
- Secure
  - Secure Vault Base
  - ARM ® TrustZone
- Wide Operating Range
  - 1.71 to 3.8 volts
  - +125°C operating temperature
- PLFRCO
  - 500 PPM LFRCO




## **xG22E Optimizations**

#### COLD START

- Efficient, Low-Energy Cold Start
  - Boot-up time less than 8ms
  - Energy consumption under 150uJ
- For energy-harvest devices that require booting up from *zero-power level*

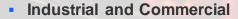
#### ENERGY MODE SLEEP WAKE-UP

- Low-Energy Deep Sleep wake-up ; Smooth energy mode transitions
  - Consuming less than 17uJ
  - Current in-rush spikes mitigated between rapid energy mode transition to protect batteries and capacitors
- For devices that spend extremely lengthy periods in deep sleep with *frequent* wake-ups between Tx
- Extends battery-life
- · Allows for energy-based wake decision making for energy-harvesting
- Multi-source wake-up (RF Sense, GPIO, RTC)





xG22E


xG22E Startup time: 8.01 ms (-42%) Startup Energy: 150 uJ (-19%) EM4 wake-up: 1.83 ms (-80%) EM4 wake-up energy: 16.6 uJ (-78%)



## **Target Markets and Applications**

Home and Life

- Smart Home Doors & Switches
- Smart Sensors
- Smart Appliances
- Gaming Electronics
- Remote Controllers



- Asset Tracking & Cold Chain
- Electronic Shelf Labels
- Smart Building Switches and Sensors
- Smart Sub-Metering
- Condition Monitoring , Factory Automation
- Tire Pressure Monitor Sensors
- Agriculture

\$**1.54** 

303



## **xG22E Value Proposition**

#### Minimize Battery Replacement and Recharging

- Low run-time and wake-up currents in sleep modes
- Extended battery life for ultra-low power beacon applications and sensors
- Compatibility with variety of power sources, power management and harvesters
  - Exploration into new battery technologies and super-capacitors
  - Compatible with multitude of power management IC's (built-in DC-DC Converter and Voltage Regulator)
  - · Integration with energy-harvesting hardware

#### Silicon Lab's first part in Ambient IoT and energy-harvesting

- Multiple configurations for energy DC-DC bypass, LFRCO, Radio PA, etc.
- Based on existing Series 2 catalogue pin-to-pin compatible. Short turnaround time to market!
- Compliant with CSA's energy-harvesting protocol Zigbee Green Power 1.1.2
- Multiple deep sleep wake-up options
  - RFSense, GPIO and RTC wake-up sources from deepest EM4 sleep mode.
- Silicon Labs' Proven Application Expertise
  - Partner reference designs
  - Simplicity Studio streamlines the development process, reducing costs and accelerating time-to-revenue





## Resources

## **Getting Started with EFR32xG22E**



#### NEW Explorer Kit – June 2024

- · Isolated debug circuit for lowest power
- mikroBus socket
- Qwiic connector
- Contents
  - 1x Explorer board

| Part Number       | Description             |
|-------------------|-------------------------|
| EK2710A- BRD2710A | EFR32MG22E Explorer Kit |



#### **NEW** Explorer Kit Shield – TBA (24Q3)

- mikroBus socket
- Qwiic connector
- E-peas PMIC shields

#### Contents

- 1 Explorer board
- 3x Energy Shields

| Part Number | Description                            |
|-------------|----------------------------------------|
| EK8200A     | EFR32xG22E Explorer e-peas shield      |
| BRD8201A    | Alternate battery and super-capacitors |
| BRD8202A    | AEM0300 PMIC for kinetic pulse sources |
| BRD8203A    | AEM13920 PMIC for dual energy source   |



#### Radio Board kits - May 2024

- Uses existing WSTK boards
- Uses existing software tools

#### Contents

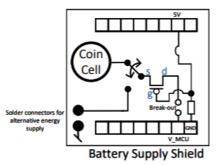
1x radio board

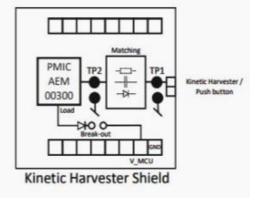
| Part Number   | Description                                      |
|---------------|--------------------------------------------------|
| xG22E-RB4415A | EFR32xG22E 2.4 GHz +6 dBm<br>Radio Board (QFN40) |
| SLWRBRD4415A  |                                                  |



## Introducing xG22E Explorer Kit e-peas Shields for energy-harvesting

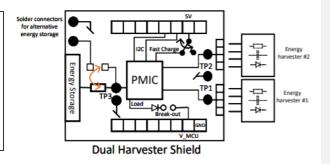
e-peas




**NEW Explorer Kit**: redesigned to minimize leakage and isolation of debugger circuit

Shield interface expansion boards:
A: Transistor rectifier
B: Diode rectifier
C: Over-voltage protection
D: Additional input capacitance


**Shield #1** for alternative battery technologies and storage options with measurements





**Shield #2** dedicated for evaluating kinetic/pulse harvest generators with measurements.

Shield #3 for dual harvest sources (PV, Thermal, Vibration, bricks) with measurements





## e-peas

**Bruno Damien** 

## e-peas Company Overview

### **Bruno DAMIEN**

Ecosystem and Partners Marketing Director bruno.damien@e-peas.com

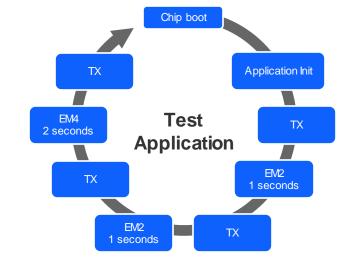


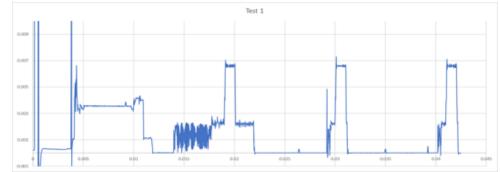




BLUETOOTH




Bruno Damien


## **Reference Materials**

- Website / Announcements:
  - o silabs.com/wireless/energy-harvesting
  - silabs.com/blog/building-a-more-sustainable-connected-world-withxg22e

#### WorksWith:

- □ 2023 <u>IOT104</u> Energy Harvesting for Low Power Wireless
- 2022 <u>APP104</u> Factory Monitoring with Thermal Harvesting
- 2020 EH202 Building Energy Harvest Devices
- Reference Designs / White-papers:
  - Thermal Energy example
  - Kinetic Switch example
  - PV Cell example
- Additional resources:
  - □ resources.mouser.com/energy-harvesting
  - Dever Electronics News energy harvesting





#### REFERENCE EXAMPLES:

- Zigbee Green Power for kinetic push buttons github
- Bluetooth for solar asset tags github







BLUETOOTH

## Thank you

#### 🛞 ВLUЕТООТН

- FEB 29<sup>TH</sup> Small Bluetooth Devices How to Minimize Size without Compromising Performance and Reliability
- APR 4<sup>TH</sup> Bluetooth LE Application Development Journey
- MAY 9<sup>TH</sup> Unboxing Silicon Labs' Latest Bluetooth SoC for Energy Harvesting
- JUN 13<sup>TH</sup> Explore Bluetooth Channel Sounding





### BLUETOOTH