Presentation Will Begin Shortly

4:00

FEB 8 TH LPWAN 101 - A Look at the Emerging LPWAN Solutions and the Applications They Serve	
MAR 14 TH Wi-SUN FAN 1.1 Rollout	
APR 18 TH Amazon Sidewalk – New Features and Market Applications	
MAY 23 TH Why Sub-GHz?	

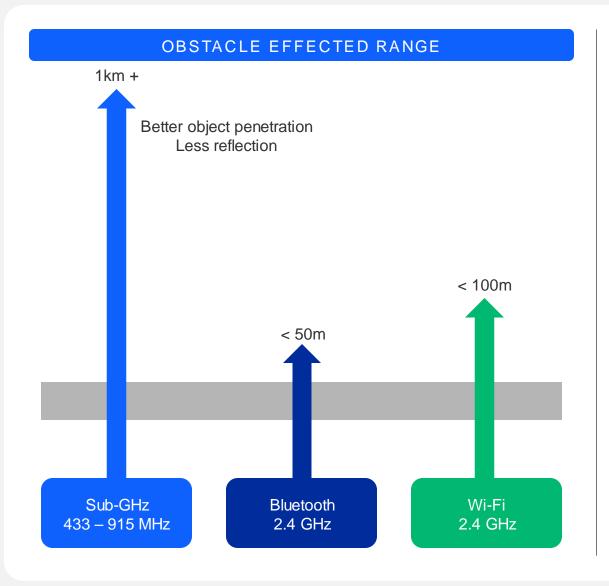
Welcome

Why Sub-GHz?

Exploring the uses for Sub-GHz networks in the expanding IoT

Chad Steider – Sr Product Marketing Manager

tech t⊳lks



Sub-GHz RF Overview

- Different frequency bands are supported in different parts of the world and for different applications
 - EU: 433/868 MHz
 - US/LTAM: 315/915 MHz
 - Japan: 426/920 MHz
 - India: 868 MHz
- Devices use unlicensed RF spectrum avoiding fees or high maintenance costs
 - Licensed bands include things like cellular where carriers purchase a portion of the spectrum for their devices
- Typically associated with long range, low power applications
 - Adoption has been driven by things like garage door openers, infrastructure, and security

Sub-GHz Advantages

- Longer point to point transmission range than 2.4 or 5 GHz
 - · Longer wavelengths easily bypass obstacles and penetrate buildings
 - · Less prone to reflection lowering free space path loss
- Less network congestion than 2.4GHz spectrum
 - Adoption of Wi-Fi, Bluetooth, Matter, etc. have resulted in crowding of 2.4 GHz space
 - · Devices typically have lower transmission duty cycles
- Power Efficiency
 - Lower data rates and better range performance lower overall system burden
 - · Less congestion results in fewer retries resulting in better battery life
- Cost-Effectiveness
 - Provide a cost-effective solution for low-data-rate systems, from simple point-to-point connections to larger mesh networks
- Security and Reliability
 - Historically been based on proprietary technologies optimized for specific applications, ensuring reliability and security requirements

Sub-GHz Disadvantages

Historically limited to lower data rates

• Narrower bandwidth restricts the amount of data that can be sent within transmit windows

Spectrum may be limited in different regions

- Some bands may be licensed or limited to certain devices resulting in spectral crowding
- · Certain geographies may also limit output power or duty cycle
- Longer wavelengths require larger antennas
 - May be difficult to design antennas to work in small form factor, space constrained devices

Multipath fading may affect overall performance

- Simple modulations may have degraded performance in urban environments
- Introduction of more complex modulations like OFDM have had a major impact on this

Historically based on proprietary technologies

Optimized for specific applications, which can limit flexibility and interoperability

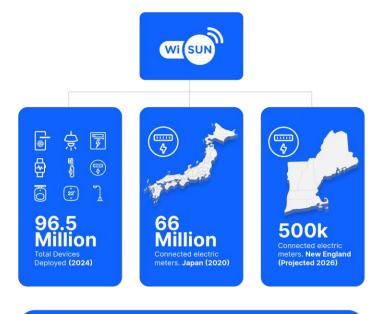
	Band	Range	Transmit rate
Wi-SUN	433 / 868 / 915 MHz	Up to 2 KM	2.4 Mbps
Wirepas	868 MHz	Up to 2 KM	1 Mbps
LoRaWAN	433 / 868 / 915 MHz	Up to 10 KM	Up to 50 Kbps
WMBus	169 / 868 / 433 MHz	Up to 1 KM	Up to 100 Kbps
ΜΙΟΤΥ	868 / 915 MHz	Up to 2 KM	512 bps
Sigfox	862 to 928 MHz	Up to 10 KM	Up to 600 bps
NB-IOT	800 / 900 MHz	Up to 10 KM	128 Kbps
Z-Wave LR	900 MHz	Up to 1 Mile	100 Kbps
Thread	2.4 GHz	Up to 100 Meters	250 Kbps
Wi-Fi	2.4 / 5 / 6 GHz	Up to 100 Meters	9.6 Gbps
Bluetooth LE	2.4 GHz	Up to 100 Meters	2 Mbps
ZigBee	2.4 GHz	Up to 100 Meters	250 Kbps

1

1

Т

Extending IoT beyond the Front Door


- Growing desire to add IoT devices outside the home
 - Add intelligence to improve resource utilization, heighten security, or elevate homeowner experience
- Sub-GHz already has major foothold within homes
 - Devices like garage door and gate openers have been utilizing sub-GHz RF for decades
- Huge base of installers for managed systems
 - Most managed security systems leverage Z-Wave today and are continuing to grow their footprint
- Sub-GHz still dominates low power space
 - Standards like Matter and Wi-Fi are not as optimized for battery powered applications
- Multi-family residential usage is driving significant growth
 - Property managers want to offer automation and monitoring without burdening residents

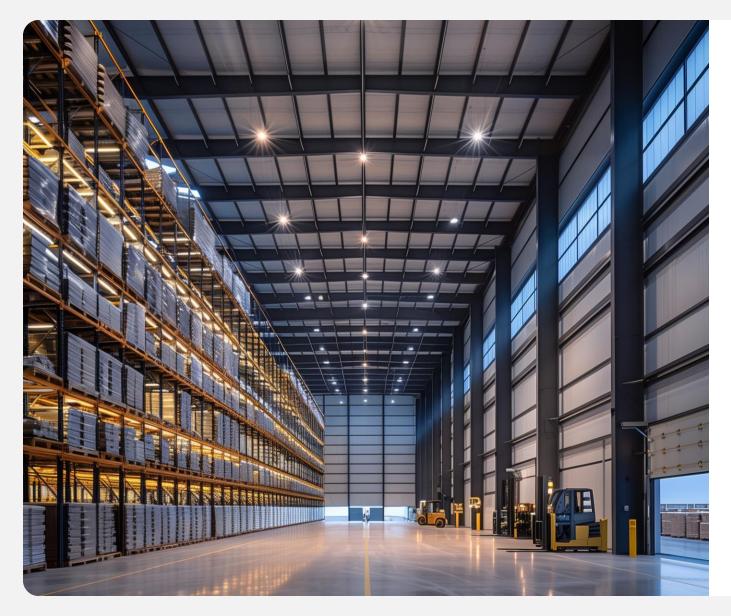
Smart Cities Expanding Sub-GHz Footprint

- Major uptick in deployments of connected devices for infrastructure, energy management, and environmental monitoring
 - Solutions like cellular have scalability challenges due to cost and complexity
- Move from proprietary to standards based solutions has improved network access and reliability
 - Networks no longer limited to one device type or vendor without compromising performance
- Need for more real-time control and monitoring
 - Device connectivity improves ability to make decision making at a node or neighborhood level
- 2.4 GHz Considerations:
 - Distance between nodes and presence of buildings limits feasibility for backhaul connections
 - Can be used in conjunction for diagnostics, local sensor networks, or configuration

Global Deployment of Smart Meters

Growing needs for interoperability

Higher cost equipment is building out backbone of municipal LPWAN networks


• Streetlights, electric meters, and other line powered devices make up majority of existing LPWAN use cases

Allows for faster ROI for entities responsible for deployment of networks

- Looking to expand use cases and allow other devices on formerly private networks
- Allows for service fee model to help recoup costs by allowing third party devices on networks
- Enabling expansion of LPWAN connectivity into lower cost and low power nodes
 - Gas meters, water meters, and environmental sensors are most frequently brought up first
- Multi-vendor interoperability is critical to this growth
 - Network accessibility and reliability are now being added at SLA level to guarantee performance

Eliminating Wires in Industrial Applications

Wires increase cost and complexity in factories and warehouses

- Wireless solutions improve layout flexibility and decrease clutter with connected equipment
- Increased data rates with emergence of OFDM have brought performance in-line with wired solutions
 - Allows users to replace CAN, RS-232 or RS-485
 with higher throughput wireless
- Provide more installation flexibility for individual applications
 - Not tied to existing wire runs or building limitations for equipment placement
- 2.4 GHz Considerations:
 - Existing IT infrastructure could potentially be leveraged and lower network overhead cost
 - Congestion of 2.4 and 5 GHz spectrum limits reliability and reach

Asset Tracking / Supply Chain Managment

- Tracking of individual assets through supply chain is becoming more important
- Challenges today due to cost of hardware and services to track throughout entire journey
- High node count implementation where many hundreds or many thousands of connected nodes may be present

WHY SUB-GHZ?

- **Better penetration:** Need to be able to perform reliably in challenging RF environment created by containers, shelves, and other metal objects
- Optimized for low power: Sensors do not need to transmit frequently or at high data rates
- Less Interference: Limited transmit windows and separation from IT networks
 lowers overall network congestion
- **Recommended Protocols :** Proprietary, Wi-SUN, Wirepas, Mioty

2.4GHZ CONSIDERATIONS

- Higher Data Rates: Need to transmit data more frequently at different points of the journey may require higher data rates
- Standardization: Need for interoperability between systems and vendors
- Worldwide Support: Assets may travel across global regions increasing need for single solution

• Recommended Protocols: 2.4GHz Mesh (Zigbee, Thread), Wirepas

Parking Availability Tracking

APPLICATION DETAILS

- Monitor and notify drivers of open parking spaces limiting the amount of searching needed and lowering environmental impact
- Typically, battery powered sensors located either in a garage or street side to determine if a parking space is occupied
- Can leverage subscription model or fee collection model to simplify usage and notification for patrons
- Garage applications may have different needs / requirements than open city parking

WHY SUB-GHZ?

- **Urban canyons:** Sub-GHz frequencies can cover larger distances and penetrate through concrete walls making them better suited for urban environments
- Low Power Performance: Parking sensors typically battery powered and do not need to transmit data very frequently
- **Mesh network:** Expand the overall network footprint without carrying the burden of the network infrastructure
- Recommended Protocols : Wi-SUN

2.4GHZ CONSIDERATIONS

- Low Power Performance: Networks like Zigbee are optimized for low power, low bandwidth sensor applications
- Small footprint coverage: Indoor parking may not need the wide area coverage of outdoor solutions
- Scalability: Mesh networks scalability in larger open parking spaces would require repeaters and hubs
- **Recommended Protocols:** 2.4GHz Mesh (Zigbee, Thread, etc)

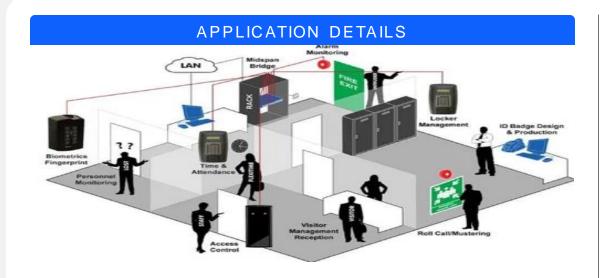
Irrigation Monitoring and Control

APPLICATION DETAILS

WHY SUB-GHZ?

- Long range: Reduce number of gateways required to cover large form land
- Network scalability: Commercial implementations may need to scale to hundreds or thousands of nodes without network interruption
- Optimized for low power: In ground sensors need to operate for months or years without any user interaction
- Low bandwidth: Sensors are not required to transmit frequent or large amounts of data
- Recommended Protocols: Wi-SUN (Agriculture) / Z-Wave (Home)

- Wide array of needs depending on use case
- Made up of controller that interfaces with overall sprinkler system and sensors placed throughout coverage area
- Drive to better understand and control resource utilization for home, agriculture, and commercial uses


2.4GHZ CONSIDERATIONS

- Indoor applications: Greenhouses or other indoor installations do not require long range
- Worldwide support: Can easily deploy the same system across the globe without any redesign

Recommended Protocols: 2.4GHz Mesh (Zigbee, Matter, Thread)

Building Security and Automation

- Need to expand systems from just security to automation driving need for multivendor interoperability
- High node counts driven by door, window, and environmental sensors
- Infrastructure cost and setup can be prohibitive depending on network architectures.

WHY SUB-GHZ?

- Robust connectivity: Need to ensure all nodes can maintain reliable connectivity for access control and credentialing
- Coverage of large number of assets: Network congestion and scalability important as use cases expand
- Mix of line and battery powered end nodes: Need to support multiple types of nodes without compromise in performance or security
- Recommended Protocols: Proprietary, Z-Wave, Wirepas

2.4GHZ CONSIDERATIONS

- Interaction with IT Networks: Credentials, access control, and support typically done as part of IT process
- Mix of line and battery powered end nodes: Need to support multiple types of nodes without compromise in performance or security
- Scalability: Need to support large numbers of nodes from multiple vendors

• Recommended Protocols: 2.4GHz Mesh (Zigbee, Thread, Matter)

Solar Trackers

WHY SUB-GHZ?

- Long range: Limited control over landscape layout requires long point to point range
- Obstacle penetration: Solar panels and support infrastructure create challenging
 RF environment
- Network scalability and maintenance: Need to easily support addition of large number of nodes with minimal support interaction
- **Recommended Protocols:** Wi-SUN, Wirepas

- Large scale installations can cover large geographic footprints with diverse landscape presenting unique RF challenges
- Very high node count with multiple types of nodes for different applications within the solar installation
- Emergence of standards like Matter that hope to consolidate use cases for residential use cases

2.4GHZ CONSIDERATIONS

- Emerging standards: Standards like Matter and Zigbee adding support specifically for distributed energy resources
- High node count: Large number of nodes limits need for long point to point range
- Interoperability: Need to interact with multiple systems including IT networks seamlessly
- Diagnostic support: Maintenance technicians need to troubleshoot interface-less devices
- Recommended Protocols: 2.4GHz Mesh (Zigbee, Matter), Bluetooth LE

Smart HVAC System - Home & Building

WHY SUB-GHZ?

- **Range and penetration:** Sub-GHz frequencies offer greater range and penetration, ideal for connecting sensors over large areas and through obstacles.
- High throughput: Inclusion of higher data rates with OFDM options allows for replacement of wired interfaces
- Energy Efficiency: Energy efficiency of sub-GHz networks, contributing to the sustainability goals of a smart HVAC system.
- Recommended Protocols: Proprietary, Wi-SUN

- Wiring increase cost and complexity of systems and installation
- Existing interface requirements drive need for higher throughput eliminating some existing technologies
- Challenging installations create complex RF environment and drive needs for better object penetration and longer range
- Need to support multiple technologies to leverage existing sensors or to support multiple types of devices

2.4GHZ CONSIDERATIONS

- Ecosystem support: Desire for inclusion in existing homeowner systems
- Off-the-shelf sensor support: Leverage existing sensors and third-party products to interface with system

• Recommended Protocols: 2.4GHz Mesh (Zigbee, Matter), Wi-Fi, Bluetooth LE

Street Lighting & Traffic Control

WHY SUB-GHZ?

- Flexible network architectures: Optimize network based on overall need with mesh, star, and point to point options
- Ease of scalability: Newly added streetlights and traffic lights could be added to the existing mesh network without much effort
- Lower infrastructure costs: Extend network functionality without need for costly infrastructure or service contracts
- Recommended Protocols: Wi-SUN
 - 2.4GHZ CONSIDERATIONS
- Worldwide support: 2.4GHz limits needs for multiple designs to support different global regions
- Limited point to point range: Mesh topologies limit the need for long point to point range
- Support for configuration and diagnostics: Allow for use of smartphone or tablet for configuration or troubleshooting
- Recommended Protocols: 2.4GHz Mesh (Zigbee), Bluetooth LE

- Improve energy efficiency and lower costs with more localized control of dimming based on ambient light, traffic patterns or pedestrian activity
- Enhance safety and security with faster response time due to co-deployed sensors and emergency notifications
- Collect data to optimize traffic flow, provide parking guidance, or provide surveillance
- Reduce light pollution and lower carbon footprint by optimizing light output to minimize environmental impact

Thank You

Watch ON DEMAND

