

Welcome

Wi-Fi 6 Benefits for IoT Applications

Ravi Subramanian

WI-FI SERIES

Agenda

- Wi-Fi Introduction
- Wi-Fi in IoT Requirements and Usage
- Why Wi-Fi 6 for IoT?
- Wi-Fi 6 key Features and Benefits for IoT
- Silicon Labs' Wi-Fi Portfolio

Wi-Fi is almost everywhere and expanding

• Wi-Fi is a ubiquitous wireless standard

- Connects wireless 'things' to the Internet
- Uses existing infrastructure and security

Wi-Fi is widely deployed in IoT

- Over billion "things" (IoT products) & growing
- Significant power and cost reduction in Wi-Fi solutions have enabled growth
- Newer Wi-Fi will further increase deployment

Evolution of Wi-Fi

New features in a version

IEEE Protocol	802.11b	802.11a	802.11g	802.11n	802.11ac	802.11ax
WFA Naming	N/A	N/A	N/A	Wi-Fi 4	Wi-Fi 5	Wi-Fi 6, Wi-Fi 6E
Year Introduced	1999	1999	2003	2009	2013	2019, 2021 for 6E
Band(s) (GHz)	2.4	5	2.4	2.4, 5 (SB or DB)	5	2.4, 5, 6 (SB, DB, TB)
Channel Bandwidth (MHz)	20	20	20	20, 40	20, 40, 80, 160	20, 40, 80, 160
Allowable Streams	1	1	1	4	8 (only 4 implemented)	8
Max Data Rates (Mbps)	11	54	54	600 (150 Mbps per stream)	433 (80MHz, 1SS) 866 (160MHz, 1 SS) 3467 (160MHz, 4 SS)	143 (20MHz, 1 SS) 600 (80MHz, 1 SS) 9607 (160MHz, 8 SS)
MIMO	N/A	N/A	N/A	Single User (SU-MIMO)	Downlink Multiuser (DL MU-MIMO)	Multiuser (Uplink and Downlink MU-MIMO) – 8 Users
Subcarrier Spacing (KHz)	N/A	312.5	312.5	312.5	312.5	78.125
Symbol Duration (us)	N/A	3.2	3.2	3.2	3.2	12.8
Guard Interval (us)	N/A	0.8	0.8	0.4 , 0.8	0.4, 0.8	0.8, 1.6 , 3.2
PHY Modulation	DSSS	OFDM	DSSS, OFDM	DSSS, OFDM, HT-OFDM	DSSS, OFDM, HT-OFDM, VHT-OFDM	DSSS, OFDM, HT-OFDM, VHT-OFDM, OFDMA
Multi-user Operation	No	No	No	No	(DL MU-MIMO)	Uplink and Downlink OFDMA
Highest Order Modulation	CCK	64-QAM	64-QAM	64-QAM	256-QAM	1024-QAM
Power Saving Mechanisms	PS-POLL	PS-POLL	PS-POLL	PS-POLL	PS-POLL	Target Wake Time
Spatial Reuse Mechanisms	No	No	No	No	No	BSS Coloring

Wi-Fi 6 is the largest upgrade to Wi-Fi and expect Wi-Fi 6 deployments to grow significantly, yet backward compatible

Requirements & How it is used in IoT

Requirements of Wi-Fi in IoT Devices

Traditional Wi-Fi is better for PC/smartphone

- Meant for infrastructure, high bandwidth, or mains-powered devices
- Used with highly resourced hardware (CPU, memory) running Linux/Android/iOS/Windows

Wi-Fi for IoT is different

- Low power consumption
- Security from online and physical attacks
- Limited device resources (MCU, memory etc.)
- Wireless, networking stack integration
- Cost and size-constrained devices
- Challenges from crowded RF spectrum
- · Cloud connectivity to multiple cloud providers
- Coexistence and Interoperability
- Limited user interface options

Wi-Fi Usage in IoT Applications

- Simplified installations and cost reductions:
 - Use existing Wi-Fi router/modem
 - Native IP protocol for internet communication
 - No additional Hub/Gateway required

Extended range, battery life, throughput

- Energy efficient and longer range 2.4GHz single-band
- Power saving capabilities
- Higher data rate support

Improve user experience and interoperability with

- The new Matter protocol
- Ecosystem cloud integration and connectivity
- Local area network connectivity

Bluetooth Low Energy usage with Wi-Fi

- Simplified provisioning
- Proximity detection
- Sensor connectivity

Wi-Fi 6 is evolving to serve the explosion in IoT devices

Today's Deployments

- Number of application types is exploding
- Number of devices is exploding and some need higher bandwidth
- Large number of devices clog the network and cause latency
- Higher device traffic cause congestion leading to delays/lower throughput
- Many devices are battery operated and need longer battery life

Tomorrow with Wi-Fi 6

4×

BETTER IN DENSE ENVIRONMENTS

Improve average throughput per user in dense or congested environments

FASTER THROUGHPUT

Deliver higher peak data rates for a single client device

INCREASE NETWORK EFFICIENCY Support large number of devices

Wi-Fi 6 Key Features & Benefits

Wi-Fi 6 Key Features and Benefits for IoT Devices

OFDMA vs OFDM: Better Spectral Efficiency and Capacity

- OFDMA allows simultaneous communication with multiple devices
 - Wi-Fi channels divided into smaller sub-channels known as Resource Units (RU).
 - Enables further AP customization of channel use to match client
 and traffic demands
 - AP can allocate the whole channel (all sub-channels within a channel) to a single user or it may partition the channel to serve multiple devices simultaneously.
- Increased efficiency for (high percentage of traffic) short data frames
 - Improves usable throughput for all devices connected to an AP.
 - OFDMA is most useful when multiple connections transmit limited amounts of data
 - Allows the protocol to squeeze smaller data packets through multiple sub-channels (most useful for IoT devices).

OFDMA reduces latency and improves network efficiency, latency and throughput

Wi-Fi 6 - Advanced Power-Save for IoT – Target Wake Time (TWT)

- TWT enables wireless AP and devices to negotiate and define specific times to access the medium.
- TWT has two available methods
 - · Individual TWT: each device can negotiate sleep period with AP
 - Broadcast TWT: AP provides sleep period for a group of devices

Individual TWT is ideal for battery operated IoT devices

- Enables longer sleep duration on a per client basis
- Longer sleep duration increases battery life
- · Eliminates interop issues due to client long sleep durations
- · Reduces contention and overlap in dense environments
- Combined with other Wi-Fi 6 features helps significantly reduce power consumption in congested environments compared to previous generation Wi-Fi

Wi-Fi 6 TWT further reduces power consumption for devices on battery, enabling longer battery life

Wi-Fi 6 Uplink Multi-User (UL OFDMA and UL MU-MIMO)

- Wi-Fi 5 introduced MU-MIMO but with only 4x4 downlink.
- Wi-Fi 6 doubled that to 8x8 and added support for Uplink (UL) for both MU-MIMO and OFDMA
- UL allows the stations to send their ACK (or other packets) to the AP simultaneously, saving airtime
- Enables simultaneous upstream and downstream data transmission improving network throughput and efficiency
- Wi-Fi 6's MU-MIMO and OFDMA techniques increase concurrent access capacity, balance throughput, improve range and reduce latency

Wi-Fi 6 UL/DL OFDMA and MU-MIMO improve device capacity, network efficiency, range and throughput

Basic Service Set (BSS) coloring enables additional ch (spacial) re-use

All same-channel BSS block

Same-channel BSS only block on Color Match

• What is BSS Coloring?

- A subchannel "color" assigned to a Unique BSS (Basic Service Set)
- Channel is blocked only if color is same
- Concurrently transmit data to multiple devices in congested areas

BSS coloring benefits:

- Maximizes network efficiency and performance
- Reduces interference, collisions and contention
- · Prevents unwanted device on time
- Enhanced coexistence and user experience with faster, energy efficient and more reliable Wi-Fi connections

Wi-Fi 6 BSS Coloring improves network performance and reduces device on time – thus better power consumption

Wi-Fi 6 Range Considerations for IoT

Outdoor / Longer range

- Often IoT devices are far from access point
 - Example humidity sensor or washer/dryer in basement
- Wi-Fi 6 supports both 2.4 GHz and 5 GHz
 - 2.4 GHz has better range, 5 GHz offers higher throughput

Wi-Fi 6 techniques improve reliability and range

- · Longer guard interval to handle echoes from further away objects
- Extended range packet format some fields are boosted by 3dB
- Duplicating data over several carriers increasing receiver reliability (DCM)
- Narrow Band transmission 2 MHz which reduces noise interference and improves receiver sensitivity
- Wi-Fi 6 overall provides better coverage and reliability

Performs well in both indoor and outdoor environments

Wi-Fi 6 – 2.4GHz and 5 GHz Benefits

W	i-Fi 6 Features	2.4 GHz	5 GHz	Benefits to IoT Applications
	Range	****	**	 Robust and full home coverage - 2.4GHz travels almost TWICE as far compared to 5GHz 2.4GHz has better penetration through walls - attenuation is less at lower frequency
	Battery Life	****	**	 2.4 GHz devices consume significantly less current than 5 GHz devices enabling longer battery life 2.4 GHz Wi-Fi devices are better suited for low power IoT applications
	Throughput	***	****	 2.4 GHz supports up to 86 Mbps data rates, enough for most IoT applications including some video streaming 5 GHz offers even higher data rates, but very few IoT applications will ever require those rates
Wiff)6	Device Density	****	****	 Wi-Fi 6's OFDMA, MU-MIMO, Beamforming, BSS coloring, and Target Wake Time, allow for higher bandwidth and denser 2.4 GHz deployments, reducing the need to move to 5GHz
	Regulatory Certifications	****	***	 2.4 GHz solutions use the ISM frequency band, with no RADAR restrictions and fewer regulatory steps for worldwide deployment compared to 5 GHz (additional regulatory testing needed for DFS Radar channels)
	Lower Cost and Design Complexity	****	***	 Support for dual-band is more expensive and complex due to support needed for higher frequency 5GHz front end and antenna components.

2.4 GHz single-band is more optimum for IoT, considering the combination of range, low power, throughput, and cost!

Wi-Fi 6 Key Benefits for IoT

Secure (WPA3) and backward compatible with previous generations of Wi-Fi devices

Silicon Labs Wi-Fi Portfolio

Silicon Labs' Wi-Fi Portfolio Summary

Features	WF200 Constants SULICENT LABS WF200	RS9116	SiWx917 つ き た い い い い い い い い い い い い い
Wi-Fi	Wi-Fi 4	Wi-Fi 4	Wi-Fi 6
BT Low Energy (LE)		✓	✓
BT Classic (Audio)		✓	
Low Power Modes	PS-POLL	PS-POLL, Listen Interval	PS-POLL, Listen Interval, TWT
Wi-Fi Features	OFDM	ODFM	OFDM, OFDMA, MU-MIMO
Wi-Fi WPA3 Security	✓	✓	✓
Co-processor Modes (RCP, NCP)	✓	✓	✓
SoC Mode (ARM® Apps MCU)			✓
ML Accelerator, PSRAM Interface, MCU Security (PSA-L2)			✓
Ultra Low Power		√	✓
Modules	✓	√	✓
Matter over Wi-Fi	\checkmark	✓	\checkmark

Silicon Labs - Complete Solution for Enabling Wi-Fi Products

Application				
	API			
TCP/IP	BT/BLE stack/profile			
Wi-Fi and Bluetooth Link Layer				

SOCS AND MODULES

Industry-leading Ultra-Low-Power Wi-Fi 4 and 6 SoCs with pre-certified modules

EMBEDDED SOFTWARE

Wi-Fi SDK with Integrated Wi-Fi, BT/BLE, IP networking stacks, Cloud and Matter support

DEVELOPMENT TOOLS

Evaluation Kit hardware plus Studio software to simplify development and speed time to market

MOBILE APPLICATIONS

Readily available EFR Connect app for Wi-Fi Provisioning with Bluetooth Low Energy

Thank You

Learn more about our solutions at silabs.com/wi-fi

Watch ON DEMAND

tech tolks upcoming sessions

FEB 2 nd	Wi-Fi 6 Benefits for IoT Applications
MAR 2 ND	Designing Low-Power Applications with Wi-Fi 6
MAR 30 TH	Fast Track Your Wi-Fi 6 Device Certification
APR 27 TH	Design with our New Multiprotocol Wi-Fi Module
MAY 25 TH	Building Smart Home Devices with Always-On Wi-Fi 6
JUN 22 ND	Developing Wi-Fi 6 Sensors Using SiWx917 and Matter

