WF-101 Wi-Fi IoT Evolution, AI/ML, Matter & More

Kalevi Ratschunas Senior Marketing Manager, Wi-Fi

SILICON LABS

Agenda

Wi-Fi Growth

Wi-Fi Evolution and Benefits to IoT

IoT-Optimized Wi-Fi

Matter

AI/ML Integration at Edge IoT

What's Shipping & What's Next

Wi-Fi Market Drivers

- 8% YoY CAGR from 2023 (3.3Bu) to 2028 (4.7Bu)
- Smart Home and Industrial lead the way
- Fast Expansion of IoT use cases
- Matter over Wi-Fi: vendor interoperability
- Advancements in Wi-Fi Technology
 - Wi-Fi 6
 - 6 GHz
 - Wi-Fi 7

Wi-Fi select end application shipments (M), ABI 2024

Wi-Fi Access Points Drive Technology Adoption for IoT Devices

- Wi-Fi 4/5
 - Phasing out...
- Wi-Fi 6
 - Largest Installed Base
 - Increasing Share
- Wi-Fi 7
 - Access Points shipping now
 - Real ramp will be 2026+
- Wi-Fi 8
 - First products expected in 2027

Wi-Fi Standard Evolution

Speed • • • • • • Efficiency Density 🗃 🖪 🖨 🔁 🖵 Capacity Reliability Advanced AI/ML driven **Applications** network optimization Seamless 4K/8K • NG IoT (e-Health, High density environment streaming Digital twin, etc) IoT and smart homes RT Advanced VR/AR • Highly-reliable Wi-Fi Enhanced gaming · High-capacity Wi-Fi Immersive VR/AR Multi-AP HD & 4K streaming • DMLO Basic HD streaming Online gaming • MLO • ELR Multi devices per home • OFDMA • Large file transfer • 320MHz CBW • dRU SOHO setups • TWT • rTWT • 2x LDPC BSS-coloring • 4096-QAM 6GHz band • MU-MIMO • MIMO Wi-Fi 8 **;0** • 1024-QAM • 80/160Mhz CBW Advanced Power Save (802.11bn) Wi-Fi 7 • 256-QAM Aggregation (802.11be) Wi-Fi 6/6E • 64-QAM (802.11ax) Wi-Fi 5 Latency **(** Power (J/bit) (802.11ac) Wi-Fi 4 **4** (802.11n)

What is IoT-optimized Wi-Fi?

6

• Traditional Wi-Fi

- High bandwidth, high power
- Access Points, PCs, Smartphones, AR/VR
- Highly resourced hardware running Linux/Android/iOS/Windows

IoT-optimized Wi-Fi

- Energy-efficient
- Limited device resources
- Cost and size-constrained devices
- Challenges from crowded RF spectrum
- Connectivity to multiple Cloud providers
- Coexistence and interoperability
- Limited user interface
- Security against online and physical attacks

Wi-Fi 6 IoT Features

Support Denser Environments Better Performance Spatial Reuse, Multi-User (MU) MIMO* Beamforming OFDMA **BSS** Coloring mmm: m.m.m : Higher Efficiency, High Density, Lower Latency Higher Throughput, Higher Capacity, Longer Range **Extended Range** Longer Battery Life 4 HE ER SU PPDU 16µs 8µs 4µs 4µs 4µs 8µs HE-STF HE-LTF HE-LTF PE L-STF L-LTF L-SIG RL-SIG HE-SIG-A Data Target Wake Time*

Wi-Fi 6 Finely-Orchestrated Features Improve Battery Life for IoT

Wi-Fi: Expanded Unlicensed Spectrum

Wi-Fi Standards	2.4GHz	5GHz	6GHz
Spectrum (US)	83.5MHz	655MHz*	1200MHz
Wi-Fi 8, 802.11bn Wi-Fi 8, 802.11bn Wi-Fi 7, 802.11be Wi-Fi 6, 11ax	 Longer range Better wall penetration Lower power Best compatibility with networks 	 More channels Higher bandwidth & data rate Less congestion and interference Coexistence with DFS 	 Pristine band without legacy burden Only Wi-Fi 6 and newer devices are allowed to operate on 6GHz band Much less issues in compatibility, efficiency and interference Even more channels Even lower latency Higher capacity even in high density environment
Wi-Fi 5, 802.11ac Wi-Fi 4, 802.11n			

Matter's Vision

Developers

- Reduce "Ecosystem specific" ٠ products
 - Lower development & • operational cost
 - Develop once / deploy everywhere
- Community Support ٠
- Accelerates Innovation ٠

Retailers

- Requires less shelf space •
 - Lowers inventory cost
- Simplify purchasing experience ٠
- Minimize returns •

Consumers

- Simplify purchasing experience ٠
- Simplify setup & control ٠
 - Provide more consistent set up • experience
- Works across ecosystems ٠

Simplicity

Interoperability

Benefits of Silicon Labs Matter Solution

Artificial Intelligence(AI) and Machine Learning(ML) at the Tiny Edge

Key Benefits •0• Ţ: Privacy, Bandwidth Offline Cost Low **IP** Protection, Mode Reduction Latency Constraints Security Operation

>3B Devices projected with TinyML in 2027

*Source: ABI Research, Artificial Intelligence and Machine Learning, 2 QTR 2022

Why Machine Learning on Edge IoT Device?

- Mission or safety-critical applications require realtime reactions
- Large data to process typically at vision use cases - no time to upload to anywhere to process
- Data never leaves the sensing device, only inference result/metadata is transferred

Privacy and IP

Protection, Security

- Less sensitive data to transmit, less chance to be hacked
- Protecting IP

 Long range, low power, and slow networks can't transfer all Time Series data to process somewhere else

Bandwidth

Constraints

- Overloading of mesh
- network is an issue
- Large data to chunk e.g. hi-res images

Offline Mode Operation

- Local system keeps operating standalone in case of any network issue
- Connectivity is occasional or blocked by admin
- Network and
 infrastructure costs
- Data ingestion costs

Cost

Reduction

•0•

- Data storage costs
- Cloud services
- Ops, maintenance
- Compact edge with ML solutions integrated to wireless SoC
- · Cheaper devices

Power constraints

- Ultra-low power applications
- Always-on systems
- Healthy tradeoff in transmit to higher level compute vs. locally process

Data processing is more efficient with Machine Learning at the sensor level

Shipping Today: SiWx917

- Low power Wi-Fi 6 + BLE SoC
 - Minimizes battery replacement and recharging hassle for users with always-on cloud connectivity
- Superior wireless performance and easy device commissioning using Bluetooth LE co-ex
- Security focus: WPA3, TLS 1.3
- Integrated MCU with high memory PSRAM, and application dedicated ARM core
- MVP (Matrix Vector Co-Processor) for ML Applications
- Extensive Wi-Fi Gateway compatibility helps reduce
 user frustration
- Seamless integration with Simplicity Studio 5

An Extensive Array of Emerging Wi-Fi Sensing Applications

14 ©2024 Silicon Labs Inc. All rights reserved.

Wi-Fi 7: Adapted for IoT from the start...

Wi-Fi 7 Features for IoT

- 320MHz Channels
 - 2X Throughput without impact on size (no additional antenna or RF assets)
- Multi-link Operation (MLO)
 - Efficiency, reliability
- 4K QAM
 - +20% transmission rates
- MRU
 - Enhnaced spectral efficiency
- MCS14 and MCS15
 - Extended range

Enhanced Power Savings

• rTWT

- Improved power savings with precision
- Improved power savings for time
- MLO
 - Seamless switch to lower power link to save power
 - Seamless switch to best link to reduce retransmission or media access contention
- MRU
 - Improved efficiency and flexible interference avoidance
- MCS14 and MCS15
 - Less Tx power for same range

What's Next? Start your Wi-Fi journey with us...

- Wi-Fi 6 is happening now
- IoT-optimized Wi-Fi is key
- 20MHz channel provides a power/bandwidth balance for IoT
- Wi-Fi IoT applications keep expanding
- Matter is making a difference
- AI/ML at the edge optimizes resources
- Wi-Fi 7 was primarily designed for high datarate applications
 - Multi-Link Operation (MLO) is Good for IoT
- Growth continues!

Wi-Fi Developer Journey with Silicon Labs

Silicon Labs can accelerate the development of Wi-Fi devices, starting by outlining each step in the process and helping you along each stage of your p We are here to simplify your development journey and help you get your devices to market faster and more efficiently. We have outlined below three key stages of the Wi-Fi Developer Journey, along with what is required to successfully complete each stage.

Download Develop:

1. Buy Kit: Hardware

3. Out of the Box Den

ng the Silicon Labs website: this site uses cookies to improve user experience and stores information on your computer. By continuing to use our site, you consent to our Cookie Policy. If you do n I learn how they can be disabled. Note that disabling cookies will disable some features of the site.

1 Buy Kit: Hardware

