) ANGGS8

SILICON LABS
PRECISION32™ SOFTWARE DEVELOPMENT KIT CODE

EXAMPLES OVERVIEW

1. Introduction

The Precision32™ code examples are part of the Software Development Kit (SDK) installed with the Precision32
software package available at www.silabs.com/32bit-software. The code examples are simple and complete
examples that illustrate and highlight the peripheral modes and features. They are also modular so code can be
copied into an application base, making peripheral-specific code development easy.

Figure 1 shows the Precision32 firmware layer block diagram.

CODE EXAMPLES '." APPLICATION
si32Library
RTOS
CMSIS CoreSupport CcMSIS CMSIS DeviceSupport
(from ARM) (from Silicon Labs)
HARDWARE

Figure 1. Firmware Layer Block Diagram

2. Relevant Documentation

Precision32 Application Notes are listed on the following website: www.silabs.com/32bit-mcu.
ANG664: Precision32™ CMSIS and HAL User’s Guide

ANG667: Getting Started with the Silicon Labs Precision32™ IDE

ANG670: Getting Started with the Silicon Labs Precision32™ AppBuilder

ANG673: Precision32™ Software Development Kit (SDK) Overview

Rev. 0.1 2/12 Copyright © 2012 by Silicon Laboratories ANG668

www.silabs.com/32bit-software
www.silabs.com/32bit-mcu

ANGGS

3. Code Example Organization

The code examples are separated by device and are located in si32-x.y\Examples\device, where x is the major
SDK version, and y is the minor SDK version. Each code example has its own folder named with the peripheral or

example name.

The IDE can import these code examples using the instructions in the application note, “AN667: Getting Started
with the Silicon Labs Precision32 IDE”. Sub-directories under the example folder include example projects for

uVision and IAR.

Figure 2 displays the code example organization on disk.

-

@Uﬂ « sim3uloc » . Blinky »

Crganize -
» .JT Music
* || Pictures

- B Videos
4 18 Computer

4 | SiLabs
4 32bit

L

|

Include in library =

4 £, Local Disk (C)

4 si32-1.0

4 Examples

si32Library

J sim3clo

; sim3ula

| AES
Elinky
CAPSEMSE
CMP
CRC
EPCA

, ExtVreg

. FLASHCTRL

| 2C

. LPTIMER
PCA
PLL
RTC
SARADC

| Sleep

Share with =

Mew folder
Mame

. ARM
IAR
| SIC
|| .cproject
|| .project

|| myLinkerQptions_p32.1d

Figure 2. Code Example Organization

Rev. 0.1

SILICON LABS

ANG6S8

4. Detailed Documentation

The detailed documentation for each code example is in the Readme file in the example folders.This file includes a
basic description of the example, the resources and clock speeds used, notes on the example and supported
modes, and detailed how-to-use steps.

The Blinky_Readme.txt file shown in Figure 3 is installed in si32-x.y\Example\sim3ulxx\Blinky for SiM3U1xx
devices after installing the Precision32 software package.

Y% Develop - Blinky/src/Blinky_Readme.bxt - Precision32 |
File Edit Mavigate Search Project Run Silicon Labs Window Help
S Gle @ BE- € W e &0, i W-I® T AR-B-ieq- £ [A Develop
LN I (IR ER ST
[Fe) Projec & il Core R ?e. Periph = B @ wWelcome B Blinky_Readme.bt &1 =0
E|V 2E Resources Used: -
< Blin 29
= Ky 30 RTCO module
! Includes o) B
31PBO.9 (RTC1 oscillator input)
& =t . 32 PB0.10 (RTIC2 oscillactor input)
(= generate 33PB1.3 (debug printf)
G sim3ulx 32 PBE2.7 (RTCO clock)
main.c 35 PB2.8 (switch)
myCpu.c 36 PB2.9 (switch)
[B myCpu.h 37 PB2.10 (led)
myPB.c 32 PB2.11 (led) p
[myPB.h 39
myRtcd.c 40 Notes On Example and Modes:
[B myRecO.h 41
[l Blinky_Readme.bxt 42 Blinky (default):
myLinkerOptions_p32.1d 43 AHB 20 MHz L
44 LPE 20 MH=z 3
45 RTCO on and counting, interrupt enabled
46 PB1.3, PB2.7, PB2.10, PB2.11 set as digital push-pull outputs
47 PBZ.8 and PB2.9 set as digital inputs
) Quicks &2 (9= Variab | ®@ Break =0 49 0fL (unused): L
50 LHB 20 MHz
B Start here 2 5 APB 20 MHz
@NewPrecisiunBZ project... RICO off, interrupt disabled
All pins set as digital inputs
#® Import SI32 SDK example(s)
jarg Build all projects [Debug] ow to Use:
56
4, Build ‘Blinky’ [Debug] 571) Download the code to a 5iM3Ulxx device on an SiM3Ulxx MCU Card i
& Clean 'Blinky' [Debug] 4 b
:’& Debug 'Blinky' [Debug] El Consale 32 [£{ Problems | ~g~==0
@ Quick Settings = Mo conscles te display at this time.
YG Project and File wizards ¥
G Import and Export ¥
G Build and Settings ¥
B Debug and Run ¥
Y Extras ¥
0¥ TG SB2 SDK: ChSiLabs\32bit\si32-1.0 - Writable Insert 14 : 40
Elinky Silabs SiM3U167 s 0 @ A

Figure 3. Code Example Documentation

SILICON LABS

Rev. 0.1

ANGGS

5. SiM3U1xx Blinky Example

Blinky uses the SiM3U1xx RTCO module and SysTick to toggle two LEDs. PB2.10 (LED on the SiM3U1xx MCU
card) toggles every 500 ms using the RTC counting 10 ms intervals. PB2.11 (also an LED) toggles every second
using SysTick. The example also reads the switches on the MCU card (PB2.8 and PB2.9) every 500 ms and prints
their status to the Console view (semi-hosting) by default.

The code examples follow the Silicon Labs AppBuilder file generation structure: generated files are included in the
src\generated folder with the g- prefix, and application files are in the src folder with my- prefix. All of the modes
implemented in the example are called from main. In the Blinky example, main calls
gModes_enter_my_default_mode() from gModes.c, which then calls gCpu_enter_default_config() in gCpu.c,
and so forth.

These code examples use the Silicon Labs Hardware Access Layer (HAL) macros by default.

- —
TGk Develop - Blinky/src/main.c - Precision32 By
Eile Edit Source Refacior MNavigate Search Project Bun Silicon Labs Window Help
3= o oL BB dH mESOPloe 4 G BE OB K- | Q- 15 [& Develop
A R
([Projec &3 o ¥l CoreR | 2, Periph | = 0|/ @ Welcome [€ mainc & . [gModes.c lc] gPB.c =20
| . _B" 25 application -
2% g || 26 #include "gModes.h®
41 Bk 27 #include
wp Includes

2% #include
= src d

4 = generated

= void gModes enter my default o
il glpuc
 gCpuh 32
f gModes.c 133 int main()
th gModes.h 34 {
\cj gPB.c
K gPB.h T
€] gRtcl.c 37 ms
\n gRtclLh I
sim3ulax
main.c e uin
myCpu.c :
myCpu.h
myPB.c
myPB.h
myRtel.c
myRtel.h

|1 Blinky_Readme.ta
| myLinkerOptions_p32.Id

gCpu_enter default config():

SETUP Forcas

43 QFB_enter_defaul

_config():

IUP RIC

gRtcl_enter defauld

FRERES

P&

while (1)
{ 53 SystemCoreClock = 20000000;
54 if (Sy=Tick Config(SystemCoreClocR

{

If maTicks_ 10 has changed...
if (meTicks 10 != meTicks 10 last)
{

Update every 500 ma

) Quicks 52 (0= Variab | % Break =0 <

»
G Start here & | " || B console & _[1 Problems s O]
[&] New Precision32 project... No consoles to display at this time.

Import S32 SDK example(s)

m

314 Build all projects [Debug]
&, Build ‘Blinky’ [Debug)
& Clean 'Blinky’ [Debug]
%5 Debug 'Blinky’ [Debug]

i Quick Settings ~ *
e T S132 SDK: Ci\SiLabs\32bit\si32-1.0 ~ [£] /Blinky/sre/main.c
Blinky Silabs SIM3UL6T e m sz
Figure 4. Blinky Example
®
4 Rev. 0.1

SILICON LABS

ANGG63

5.1. Blinky Application-Specific Files
5.1.1. main.c

The main.c file calls functions from the gModes.c and the port HAL as shown in Figure 5. This file also includes all
the main application code that sits in a while(1) loop, toggling the LED pins or reading the switches and printing
their status to the Console view.

Blinky

main.c » gModes.c

si32Hal

Y
SI32_PBSTD_A_Type.c |

Figure 5. main.c Dependencies

5.1.2. myCpu.c

This file has the application-specific implementation of mySysteminit() called by system_sim3ulxx.c in the HAL.
For Blinky, this function:

m Disables the Watchdog Timer.

m Enables APB to the Port Bank modules.

m Sets the Serial Wire Viewer pin (PB1.3) to push-pull.
Figure 6 shows the dependencies for myCpu.c.

Blinky
myCpu.c
A
si32Hal
—>| SI32_CLKCTRL_A_Type.c |
system_sim3ulxx.c | —>| SI32_WDTIMER_A_Type.c |

> SI32_PBSTD_A_Typec |

Figure 6. myCpu.c Dependencies

5.1.3. myPB.c
This file doesn’t include any application-specific code for the Blinky example.

Rev. 0.1 5

SILICON LABS

ANGGS

5.1.4. myRtcO.c

The myRtcO.c file includes the second-level handlers for the RTCO Alarm 0 and RTCO oscillator fail interrupts.
These second-level handlers are called from the first-level handlers in gRtcO.c.

The second-level Alarm O handler:

m Reads the RTCO counter value.

m Sets the RTCO Alarm 0 value with a new value equal to the current counter value + 10 ms.

m Increments msTicks_10, which keeps track of the 10 ms intervals.

m Clears the Alarm 0 interrupt in the RTCO module.
The second-level oscillator fail handler sits in a while(1) loop to indicate an unrecoverable error condition.
Figure 6 shows the dependencies for myRtcO.c.

Blinky
myRtc.c < gRtc.c
si32Hal

—>| SI32_RTC_A_Type.c |
—>| SI32_RTC_A_Type.c |
—>| SI32_RTC_A_Type.c |

Figure 7. myRtc0.c Dependencies

5.2. Blinky AppBuilder-Generated Files

5.2.1. gCpu.c

This file contains the SysTick handler, which increments the msTicks variable, and the
gCpu_enter_default_config() function, which is called from gModes_enter_my_default_mode() in gModes.c.
This function sets the SystemCoreClock variable to 20 MHz, since Blinky uses the Low Power Oscillator, and sets
the SysTick timer to trigger every millisecond.

Figure 8 shows the dependencies for gCpu.c.

Blinky
gCpu.c < gModes.c
si32Hal

—>| core_cm3.h

Figure 8. gCpu.c Dependencies

6 Rev. 0.1

SILICON LABS

ANGG63

5.2.2. gModes.c

The gModes.c file has two functions: gModes_enter_my_default_mode() and gModes_enter_my_off _mode().

The default mode function places the device in the default mode after a reset and calls

gCpu_enter_default_config() from gCpu.c, gPB_enter_default_config() from gPB.c, and
gRtcO_enter_default_config() from gRtcO.c.

The off mode function is not currently called from anywhere in the project and includes calls to
gRtcO_enter_off_config() from gRtc0.c and gPB_enter_off_config() from gPB.c.

Figure 9 illustrates the dependencies diagram for gModes.c.

Blinky

gModes.c > gPB.c

si32Hal

Figure 9. gModes.c Dependencies

Rev. 0.1 7

SILICON LABS

ANGGS

5.2.3. gPB.c

This file includes two functions: gPB_enter_off_config() and gPB_enter_default_config().
The gPB_enter_off_config() function is called by gModes_enter_my_off_mode() in gModes.c and sets all the
pins to digital input mode, disables crossbar 1, and disables the APB clock to the port registers.
The gPB_enter_default_config() function:

Enables the APB clock to the port registers.

Sets the SWV pin to push-pull.

Enables crossbar 1.

Sets the PB2.10 and PB2.11 pins to push-pull.

Sets the PB2.8 and PB2.9 pins to digital input mode.

Configures the PB0.9 and PB0.10 RTCO oscillator input pins as analog inputs.

Configures PB2.7 to output the RTCO clock by setting PB2.7 to push-pull, skipping the PB2.0-PB2.6 pins
on crosshar 1, and enabling the oscillator output on crossbar 1.

Figure 10 shows the dependencies for gPB.c.

Blinky

si32Hal

—>| SI32_CLKCTRL_A_Type.c |
—>| SI32_PBSTD_A_Type.c |

—>| SI32_PBCFG_A_Type.c |

Figure 10. gPB.c Dependencies

8 Rev. 0.1

SILICON LABS

ANGG63

5.2.4. gRtcO.c

The gRtcO.c file includes the first-level interrupt handlers for the RTCO oscillator fail (RTCOFAIL_IRQHandler())
and Alarm 0 (RTCOALRM_IRQHandler()). These first-level interrupt handlers just call the second-level handlers
and must use the handler names defined in sim3ulxx.h, the device-specific header file.

In addition to the first-level interrupt handlers, gRtcO.c has two functions: gRtc_enter_off config() and
gRtcO_enter_default_config().
The gRtc_enter_off _config() function disables the Alarm 0 interrupt in the RTCO module, clears any pending
oscillator fail or Alarm O interrupts in the NVIC, and disables these two interrupts in the NVIC. In addition, the
function stops the RTCO timer, disables the RTCO module, and disables the APB clock to RTCO.
The gRtc0_enter_default_config() function:
Enables the APB clock to the RTCO module.
Enables the RTC module and configures it for crystal oscillator mode.
Sets the initial Alarm 0 value for 10 ms.
Clears any pending interrupts and enables the interrupts in the NVIC.
Enables the Alarm 0 interrupt in the RTCO module.
m Enables the RTCO output.
Figure 11 shows the dependencies for gRtcO.c.

Blinky

gRtcO.c > myRtcO0.c

si32Hal

> SI32_ CLKCTRL_A_Typec |
—>| SI32_RTC_A_Type.c |

—>| core_cm3.h |

Figure 11. gRtc0.c Dependencies

Rev. 0.1 9

SILICON LABS

Simplicity Studio

One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

loT Portfolio SW/HW Quality Support and Community
www.silabs.com/loT www.silabs.com/simplicity www.silabs.com/quality community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.

®

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

USA

SILICON LABS http://www.silabs.com

	1. Introduction
	2. Relevant Documentation
	3. Code Example Organization
	4. Detailed Documentation
	5. SiM3U1xx Blinky Example
	5.1. Blinky Application-Specific Files
	5.1.1. main.c
	5.1.2. myCpu.c
	5.1.3. myPB.c
	5.1.4. myRtc0.c

	5.2. Blinky AppBuilder-Generated Files
	5.2.1. gCpu.c
	5.2.2. gModes.c
	5.2.3. gPB.c
	5.2.4. gRtc0.c

