AN982: BLUETOOTH®
GLUCOSE SENSOR

APPLICATION NOTE
Wednesday, 02 December 2020

Version 1.2

LOW ENERGY SOFTWARE

-’

SILICON LABS

VERSION HISTORY

Version Comment

1.0 First version

1.1 Minor updates

12 Renamed "Bluetooth Smart" to "Bluetooth Low Energy" according to the

official Bluetooth SIG nomenclature

Silicon Labs

TABLE OF CONTENTS

1
2
3

6

el A geTo [U Y o3 1T o] o F T PP PP PTOPPPPTPPPPPIN 4

What is Bluetooth LOw Energy TEChNOIOGY? ...coouiiiiiiiiiieiiiie et 5

Introduction to the Bluegiga Bluetooth Low Energy SOftware.........ccocouveeiiiiiiiiiiiicc e 6
3.1 The Bluetooth LOW ENEIrgY STACKccoiiiiiiiiiiiiieiiiie ettt 6
3.2 The Bluetooth LOW ENEIgY SDKoccciiiiiiiiiieeee s ettt e e e s sttt e e e e e s s st aa e s e e e e s s annnbaaeeaeeeesnnnnteneraeeenas 6
3.3 THE BGAPT PrOtOCOI ...ttt ettt e e nn e e sre e nnne s 8
3.4 The BGLID HOSE LIDIAIY ..ceeeeiii ettt e e e e e st e e e e e e s e nnn e e e e e e e e e s nnnnraneeaeeeean 9
35 BGSCript™ Scripting LANQUAGEcuviiiiiiee ittt ee e e s sttt e e e e e e s e sttt e e e e e e e s s s stn e e e e e e e s e ssntnraeeeaeeeesanns 10
3.6 THE PrOfile TOOIKIT......eeieiireiee ittt e e e e e s s e e e s n e e e s nne e e e anrneeeena 11

GlUCOSE PrOTI i —————— 12
4.1 (D2 ox €]] 1o B O O PP PPPRRN 12
4.2 GATT Server: ServiCe reQUIFEIMENTSeieiiiiiee it et iieee e et e ettt e e s st e e s stbr e e e e sabr e e e s anbe e e e e sabeeeeanneee 13
4.3 GATT Server: Attribute reQUIFEMENTSocoiiiiiie ittt 13
4.4 Recommended connection establishment proCedUrescooviiiiiiiiiiiii e 14
4.5 SECUNLY TEOUITEIMEINTSeeiie ittt ettt e e et e e e ettt e e e e st et e e e aabe e e e e st be e e e e aabe e e e e anbbeeeeanbeeeeeaneee 14

TeaT ol =T aaY=T ol] g Yo =W €] [0 odo F-T =0 T=T o] o 1 PP 15
51 Creating @ ProjeCt (ProJECT.XIMI) ... e ———— 16
5.2 Hardware configuration (RardWar€.XMI)ueuuueiiiiiiiiieieieieieieieeieeeeee . 17
5.3 GATT database for Glucose SeNSOr (Gatt. XMI) ..o 18
5.4 Application Configuration (CONfiIg.XMI)ooiiiiiiiiii 22
55 BGScript for Glucose Sensor (gluC0Se_SENSOr.DYS) ..uuuviiiiiiiiiiiiiiiiiiiiiiiiieeiereiee e 23
5.6 Compiling and Installing the FIMWAIE ...t 28
5.7 TESHNG the GIUCOSE SENSOLeiiiiiiiiie ettt e et e e et bt e e e sbb e e e e sbaeeeesnbeeeeeans 32
5.8 Testing With BLEGUI SOfIWAIEouuiiiiiiiiee ittt et e e e sbreee e 32
5.9 Testing With IPRONE OF IPATcoiiiiiiii ettt e e breee e 38

EXTEINAI FESOUITES ..ttt ettt ettt s ettt e ekttt e e e skttt e o e a kbt e e e n b bt e e e e abb e e e e anbbe e e e ennbeeeeennnee 42

Silicon Labs

1 Introduction

This application note discusses how to build a Bluetooth 4.0 glucose profile sensor using Bluegiga’s Bluetooth
4.0 software development kit, for use with a DKBLE112 hardware evaluation board and an Apple iPhone or
iPad, or other Bluetooth Low Energy device capable of acting as a glucose collector. The application note
contains a practical example of how to build a GATT-based Glucose Profile and how to make a basic glucose

sensor device using BGScript scripting language, including authenticated bonding (encryption) and on-module
glucose record storage and retrieval.

Various other features of the development kit are also demonstrated in this project for the sake of instruction,
such as SPI communication to the on-board LCD, potentiometer ADC readings to simulate glucose levels, and
UART debug data output.

Note that the glucose profile as implemented is an official profile standardized by the Bluetooth SIG.

Silicon Labs

Page 4 of 43

2 What is Bluetooth Low Energy Technology?

Bluetooth Low Energy (Bluetooth 4.0) is a new, open standard developed by the Bluetooth SIG. It's targeted
to address the needs of new modern wireless applications such as ultra-low power consumption, fast
connection times, reliability and security. Bluetooth Low Energy consumes 10-20 times less power and is able
to transmit data 50 times quicker than classical Bluetooth solutions.

Link: How Bluetooth low enerqy technology works?

Bluetooth Low Energy is designed for new emerging applications and markets, but it still embraces the very
same benefits we already know from the classical, well established Bluetooth technology:

Robustness and reliability - The adaptive frequency hopping technology used by Bluetooth Low
Energy allows the device to quickly hop within a wide frequency band, not just to reduce interference
but also to identify crowded frequencies and avoid them. On addition to broadcasting Bluetooth Low
Energy also provides a reliable, connection oriented way of transmitting data.

Security - Data privacy and integrity is always a concern is wireless, mission critical applications.
Therefore Bluetooth Low Energy technology is designed to incorporate high level of security including
authentication, authorization, encryption and man-in-the-middle protection.

Interoperability - Bluetooth Low Energy technology is an open standard maintained and developed
by the Bluetooth SIG. Strong qualification and interoperability testing processes are included in the
development of technology so that wireless device manufacturers can enjoy the benefit of many
solution providers and consumers can feel confident that equipment will communicate with other
devices regardless of manufacturer.

Global availability - Based on the open, license free 2.4GHz frequency band, Bluetooth Low Energy
technology can be used in world wide applications.

There are two types of Bluetooth 4.0 devices:

Bluetooth 4.0 single-mode devices that only support Bluetooth Low Energy and are optimized for
low-power, low-cost and small size solutions.

Bluetooth 4.0 dual-mode devices that support Bluetooth Low Energy and
classical Bluetooth technologies and are interoperable with all the previously Bluetooth specification
versions.

Key features of Bluetooth Low Energy wireless technology include:

Ultra-low peak, average and idle mode power consumption
Ability to run for years on standard, coin-cell batteries

Low cost

Multi-vendor interoperability

Enhanced range

Bluetooth Low Energy is also meant for markets and applications, such as:

Automotive
Consumer electronics
Smart energy
Entertainment

Home automation
Security & proximity
Sports & fitness

Silicon Labs
Page 5 of 43

https://www.bluetooth.org/en-us/training-resources/technology
http://www.youtube.com/watch?v=KW-TKBBiFss
http://www.youtube.com/watch?v=9G19p4ec_vM
http://www.youtube.com/watch?v=xjm9YyV2yeM
http://www.youtube.com/watch?v=3bifVc_iC2Y
http://www.youtube.com/watch?v=Ei_L1Pu6YuI
http://www.youtube.com/watch?v=TUwedeshPJU
http://www.youtube.com/watch?v=uQuGvBci5CQ

3 Introduction to the Bluegiga Bluetooth Low Energy Software

The Bluegiga Bluetooth Low Energy Software enables developers to quickly and easily develop Bluetooth Low
Energy applications without in-depth knowledge of the Bluetooth Low Energy technology. The Bluetooth Low
Energy Software consist of two parts:

e The Bluetooth Low Energy Stack
e The Bluetooth Low Energy Software Development Kit (SDK)

3.1 The Bluetooth Low Energy Stack

The Bluetooth Low Energy stack is a fully Bluetooth 4.0 single mode compatible software stack implementing
slave and master modes, all the protocol layers such as L2CAP, Attribute Protocol (ATT), Generic Attribute
Profile (GATT), Generic Access Profile (GAP) and security and connection management.

The Bluetooth Low Energy is meant for the Bluegiga Bluetooth Low Energy products such as BLE112,
BLE113 and BLED112 and it runs on the embedded MCU used in these products so no host is needed.

3.2 The Bluetooth Low Energy SDK

The Bluetooth Low Energy SDK is a software development kit, which enables the device and software
vendors to develop products on top of the Bluegiga’'s Bluetooth Low Energy hardware and software.

The Bluetooth Low Energy SDK supports multiple development models and the software developers can
decide whether the application software runs on a separate host (a low power MCU) or whether they want to
make fully standalone devices and execute their code on the MCU embedded in the Bluegiga Bluetooth Low
Energy modules. The SDK also contains documentation, tools for compiling the firmware, installing it into the
hardware and lot of example application speeding up the development process.

fully standalone applications using a simple scripting language called BGScript™. Several profiles and
examples are also offered as a part of the Bluetooth Low Energy Software in order to easily develop the
Bluetooth Low Energy compatible end products.

Bluegiga’s Bluetooth Low Energy Software provides a complete development framework for Bluetooth Low
Energy application implementers.

Silicon Labs
Page 6 of 43

Optional oSt

Bluetooth Low Enerzy Module

¢)

Bluegiga BGScript™ W1

Bluegiga BGAPI™ UART or USB

Bluegiga BGLib
{BGAPI parser)

e

Figure 1. Bluetooth Low Energy Software
The Bluetooth Low Energy Software architecture is illustrated and it consists of the following components
e The Bluetooth Low Energy stack implementing the Bluetooth Low Energy protocol
e BGAPI™APIs that enable the software developers to interface to the Bluetooth Low Energy Stack

e BGScript™ Virtual Machine (VM) and scripting language which enable application code to be
developed and executed directly on the Bluetooth Low Energy hardware

e BGLib™ lightweight host library which implements the BGAPI binary protocol and parser and is target
for applications where separate host processor is used to interface to the Bluetooth Low Energy
modules over UART or USB.

e Profile Toolkit™ is a GATT based profile development tool that enables software developers quickly
and easily to describe the Bluetooth Low Energy profiles, services and characteristics using simple
XML templates

Each of these components are described in more detail in the following chapters.

Silicon Labs
Page 7 of 43

3.3 The BGAPI Protocol

For applications where a separate host is used to implement the end user application, a transport protocol is
needed between the host and the Bluetooth stack. The transport protocol is used to communicate with the
Bluetooth stack as well to transmit and receive data packets. This protocol is called BGAPI and it's a
lightweight binary based communication protocol designed specifically for ease of implementation within host
devices with limited resources.

The BGAPI protocol is a simple command, response and event based protocol and it can be used over UART
SPI (at the moment not supported by the Bluetooth Low Energy hardware) or USB interfaces.

{ Application } Bluetooth stack

——————Command [Message type : Qo0 ——————®
—FResponse (Message type : Ix00)

lf—— Fvent [Message type - OxB0)

Some commands may generate events

Figure 2. BGAPI protocol

The BGAPI provides access for example to the following layers in the Bluetooth Low Energy Stack:

Generic Access Profile - GAP allows the management of discoverability and connetability modes
and open connections

Security manager - Provides access the Bluetooth Low Energy security functions
Attribute database - An class to access the local attribute database

Attribute client - Provides an interface to discover, read and write remote attributes
Connection - Provides an interface to manage Bluetooth Low Energy connections

Hardware - An interface to access the various hardware layers such as timers, ADC and other
hardware interfaces

Persistent Store - User to access the parameters of the radio hardware and read/write data to non-
volatile memory

System - Various system functions, such as querying the hardware status or reset it

Silicon Labs
Page 8 of 43

3.4 The BGLib Host Library

For easy implementation of BGAPI protocol an ANSI C host library is available. The library is easily portable
ANSI C code delivered within the Bluetooth Low Energy SDK. The purpose is to simplify the application
development to various host environments.

Bluetooth Low Enerzy Module

Figure 3: BGLib host library

Silicon Labs
Page 9 of 43

3.5 BGScript™ Scripting Language

The Bluetooth Low Energy SDK Also allows the application developers to create fully standalone devices
without a separate host MCU and run all the application code on the Bluegiga Bluetooth Low Energy
Hardware. The Bluetooth Low Energy modules can run simple applications along the Bluetooth Low Energy
stack and this provides a benefit when one needs to minimize the end product’s size, cost and current
consumption. For developing standalone Bluetooth Low Energy applications the SDK includes the Script VM,
compiler and other BGScript development tools. BGScript provides access to the same software and
hardware interfaces as the BGAPI protocol and the BGScript code can be developed and compiled with free-
of-charge tools provided by Bluegiga.

Typical BGScript applications are only few tens to hundreds lines of code, so they are really quick and easy to
develop and lots of readymade examples are provides with the SDK.

' Blustooth Low Energy hModule

.)

Eluegiza BGScript™ wvm

Bluegza BGAPT™

Figure 4: BGScript application model

BGScript code example:

System Started

event system boot (major, minor, patch, build, 11 version, protocol version,hw)
#Enable advertising mode
call gap set mode (gap_general discoverable,gap undirected connectable)
#Enable bondable mode
call sm_set bondable mode (1)
#Start timer at 1 second interval (32768 = crystal frequency)
call hardware set soft timer (32768)

end

Silicon Labs
Page 10 of 43

3.6 The Profile Toolkit

The Bluetooth Low Energy profile toolkit a simple set of tools, which can used to describe GATT based
Bluetooth Low Energy services and characteristics. The profile toolkit consists of a simple XML based
description language and templates, which can be used to describe the devices GATT database. The profile
toolkit also contains a compiler, which converts the XML to binary format and generates API to access the
characteristic values.

<?xml version="1.0" encoding="UTF-8" 2>

<configuration®>

<gervice uuid="1800">
<degcription>Generic Access Profile«</description>

<characteristic uuid="2ab0">
<properties read="truoe" const="true" />
<value>BGDemo =sen=sor</value>

</characteristick

<characteristic uuid="2all"=>
<properties read="truoe" const="troe" />
<wvalue type="hex">4142</value>
</characteristic>
</servicex

</configurationl

Figure 5: A profile toolkit example of GAP service

Silicon Labs
Page 11 of 43

4 Glucose profile

4.1 Description

The Glucose Profile enables a device to connect and interact with a glucose sensor for use in consumer and
professional healthcare applications. The full Bluetooth SIG specification for the Glucose Profile is available in
PDF form here:

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=248025

An organized table structure of the Glucose profile as defined by the Bluetooth SIG is available here:

http://developer.bluetooth.org/gatt/profiles/Pages/ProfileViewer.aspx?u=org.bluetooth.profile.glucose.xml

(Other links present in this document to services and characteristics also go to the Bluetooth SIG service
browser online.)

The Glucose Profile defines two roles:
1. Glucose Sensor

The sensor is the devices which has the actual glucose measurement device and provides the GATT structure
and data storage for use by a collector (see below). A glucose sensor must include at least a partial
implementation of the Device Information service as well as the sensor portion of the Glucose service, as
defined by the Bluetooth SIG.

2. Collector

The collector is the device which gathers glucose data from the sensor. In this example, we will do partial
testuse an iOS application provided by Nordic Semiconductor for a comprehensive GUI-based collector. This
application note does not discuss the implementation of a collector itself.

The figure below shows the relationship of these two roles.

Glucose Sensor Collector

Glucose Service

Generic Access Service Glucose Measurement Generic Access Service

Glucose Measurement
Context

F'S
h 4

Glucose Feature
Device Information Device Information
Service Service

Record Access
Control Point

Figure 6: Glucose Profile roles

Silicon Labs
Page 12 of 43

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=248025
http://developer.bluetooth.org/gatt/profiles/Pages/ProfileViewer.aspx?u=org.bluetooth.profile.glucose.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.glucose.xml

4.2 GATT Server: Service requirements

The table below describes the service requirements.

Service uuID Glucose Sensor
GAP service 1800 Mandatory
Glucose service 1808 Mandatory
Device Information service 180A Mandatory

Table 1: Service requirements

4.3 GATT Server: Attribute requirements

The table below describes the structure and requirements for the attribute used in the Glucose Service. (Links
go to the Bluetooth SIG online characteristic definition browser for that attribute)

Characteristic UUID | Length Type Support Security Properties
Glucose Measurement 2A18 Variable Hex Mandatory | None Notify

(max 17B)

Variable . .
Glucose Measurement Context 2A34 (max 17B) Hex Optional None Notify
Glucose Feature 2A51 | 2 bytes Hex Mandatory | None Read

. Variable Writeable with . .

Record Access Control Point 2A52 (typical 2B) Hex Mandatory Authentication Write, Indicate

Table 2: Glucose Service structure (sensor only)
e Each UUID in this service is an official, adopted 16-bit ID for the characteristic

e The Glucose Measurement and Context length is variable depending on the features supported by
the sensor. This demo emulates all specified features (though most data is arbitrarily chosen only for
demo purposes). and has a length of 17 bytes. This fits within the maximum payload size for indicated
values (20 bytes).

e Security is not necessary to connect to a glucose sensor in order to read a single measurement taken
during connection, but it is required to access historical records which may be stored on the device.
These records are only accessible through the Record Access Control Point. In order to write
control commands to this attribute, the collector must bond (a.k.a. pair) with the sensor. A collector
which connects but does not pair will not be allowed to write any values to the control point, and
therefore will not be able to access any stored records.

e Glucose Measurement and the optional Glucose Measurement Context cannot be directly read,
but may only be pushed (via notifications) from the sensor to the collector, after the collector enables
client notifications for those services. Glucose Feature contains a constant value describing the
feature set of the sensor device, and may be read as desired by the collector.

Silicon Labs
Page 13 of 43

http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.glucose_measurement.xml
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.glucose_measurement_context.xml
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.glucose_feature.xml
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.record_access_control_point.xml

4.4 Recommended connection establishment procedures

441 Un-bonded devices

Advertisement duration Parameter
First 30 seconds (fast connection) | Advertising interval 20ms to 30ms
After 30 seconds (reduced power) | Advertising interval 1000ms to 2500ms

Table 3: Advertising parameters for un-bonded Glucose Sensor

The Glucose Sensor should use the GAP Limited Discoverable Mode with connectable undirected
advertising events when establishing an initial connection. (For simplicity, this demo implementation uses
GAP General Discoverable Mode.)

If the connection is not established within a time limit, the sensor may exit GAP Connectable mode. (For
simplicity, this demo implementation does not ever exit GAP Connectable mode.)

4472 Bonded devices

The following produce is uses for bonded devices:

A Glucose Sensor shall enter the GAP Undirected Connectable Mode either when commanded by the
user to initiate a connection to a Collector or when a Glucose Sensor has one or more stored records to
send to a previously connected Collector.

The Glucose Sensor should write the address of the target Collector in its White List and set its controller
advertising filter policy to ‘process scan and connection requests only from devices in the White List’. The
advertisement parameters should be as in Table 3.

If the connection is not established within a time limit, the sensor may exit GAP Connectable mode.

4.4.3 Link loss procedure

When connection is terminated due to link loss the sensor should attempt reconnection with the Collector by
entering the GAP connectable mode using the recommended parameters from Table 3.

4.5 Security requirements

The Glucose Sensor shall bond with the Collector.

When bonding is used:

1.

All supported characteristics specified by the Glucose Service shall be set to Security Mode 1 and
either Security Level 2 or 3.

The Glucose Sensor shall use the SM Slave Security Request procedure to inform the Collector of its
security requirements.

All characteristics specified by the Device Information Service that are relevant to this profile should be
set to the same security mode and level as the characteristics in the Glucose Service.

Silicon Labs
Page 14 of 43

5 Implementing a Glucose Sensor

The chapter contains step by step instructions how to implement a stand-alone Glucose Sensor with

Bluegiga’s Bluetooth 4.0 Software Development Kit. The chapter is split into following steps:
1.

o g > w D

Creating a project

Defining hardware configuration

Building Glucose and Device Information Services with Profile Toolkit
Writing BGScript source code

Compiling the GATT database and BGScript into binary firmware
Installing the firmware into BLE112 or DKBLE112 hardware

The actual project comes as an example with the Bluegiga’s Bluetooth Low Energy Software Development Kit
v.1.1.1 or newer under the \example\glucose_sensor)\ directory.

Silicon Labs

Page 15 of 43

5.1 Creating a project (project.xml)

The Glucose Sensor implementation is started by first creating a project file (project.xml), which defines the
resources use by the project and the firmware output file. This project file includes a description of each of the
main elements of the project.

<?xml version="1.0" encoding="UTF-8" 2>
<project>
<gatt in="gatt.xml" />
<hardware in="hardware.xml" />
<script in="glucose demo.bgs" />
<config in="config.xml" />
<image out="out.hex" />

</project>
Figure 7: Project file (project.xml)
e <gatt> Defines the XML file containing the GATT database.
e <hardware> Defines the XML file containing the hardware configuration.
e <script> Defines the BGScript file which contains the BGScript code.
e <config> Defines the application configuration file.
e <image> Defines the output HEX file containing the firmware image.

Silicon Labs
Page 16 of 43

5.2 Hardware configuration (hardware.xml)

The hardware.xml file contains the hardware configuration for BLE112 device. It describes which interfaces
and functions are used and what their specific properties are.

<hardware>

</hardware>

<?xml version="1.0" encoding="UTF-8" 2>

<sleeposc enable="true" ppm="30" />

<usb enable="false" />

<txpower power="15" bias="5" />

<script enable="true" />

<pmux regulator pin="7" />

<usart channel="0" mode="spi master" alternate="2" polarity="positive" phase="1"
endianness="msb" baud="57600" endpoint="none" />

<usart channel="1" alternate="1" baud="115200" endpoint="none" flow="false" />

<port index="0" pull="down" />

Figure 8: Hardware configuration for Glucose Sensor

e <sleeposc>

o <usb>

e <txpower>

e <script>

e <pmux>

° <usart channel="0">

° <usart channel="1">

° <p0ﬂ>

The 32.768KHz sleep oscillator is enabled. Sleep oscillator allows the device to
enter power mode 1 or 2 between Bluetooth operations, for example between
connection intervals. This should always be used.

USB interface is disabled to save power and allow the device to go to low-power
modes. If USB is enabled, no low-power modes will be used.

TX power is set to +3dBm value. Every step represents roughly a 1dBm change
and the range of the parameter is 15 to 0, corresponding TX power values
from +3dBm to -24dBm.

Scripting is enabled as the Glucose Sensor application is implemented with
with the BGScript scripting language.

Enables automatic management of the DC/DC converter on the DKBLE112.
This prevents momentarily large current draws from the CR2032 battery during
transmissions, if battery power is used, and will extend the life of the battery.

Enables one USART interface used for SPI data communications. In this
configuration, USART 0 is used in alternate configuration 2, which allows
communication with the SPI-based LCD on the DKBLE112.

Enables the second USART interface used for UART data communications. In
this configuration, USART 1 is used in alternate configuration 1 and with 115200
bps baud rate. RTS/CTS flow control is disabled, since this allows the BLE112
to send data regardless of whether anything is connected to the port, which
prevents the buffer from filling up and potentially locking the module.

Configures Port 0 pins with pull-down (for later use with GPIO interrupts).

The example is designed to work with the DKBLE112 development kit in the default configuration, so it can be
easily tested with the DKBLE112 and an iPhone running the Nordic Semiconductor nRF Ready app.

Silicon Labs
Page 17 of 43

https://itunes.apple.com/us/app/nrfready-utility/id497679111

5.3 GATT database for Glucose Sensor (gatt.xml)

This section describes how to define the Glucose Profile’s services using Bluegiga’s Profile Toolkit.
The Glucose Profile contains three services:

1. Generic Access Profile (GAP) service

2. Device Information service

3. Glucose service

Optionally, if the application requires it, other services can be implanted, such as the Battery Status service.
This demo project implements the Battery Status service as well.

5.3.1 Generic Access Profile (GAP) service

Every Bluetooth Low Energy device needs to implement a GAP service. The GAP service is very simple and
consists of only two characteristics. An example implementation of GAP service is show below.

The service has two characteristics, which are explained in Table 4. In this example the characteristics are
read-only, so they are also marked as const. Constant values are stored on the flash of BLE112 and the
value is defined in the GATT database. Constant values cannot be changed.

<!--1800: org.bluetooth.service.generic access -->
<service uuid="1800" id="generic_ access">
<description>Generic Access</description>

<!-- 2A00: org.bluetooth.characteristic.gap.device name -->
<characteristic uuid="2A00" id="c_device_ name">
<description>Device Name</description>

<!-- glucose profile v1.0 optional spec: device name is writable, not enabled here -->
<properties read="true" const="true" />
<!-- It's a good idea to keep this <= 19 characters, for proper display on iOS -->

<value>BGT Glucose Demo</value>
</characteristic>

<!-- 2A01: org.bluetooth.characteristic.gap.appearance -->
<characteristic uuid="2A01" id="c_appearance">
<description>Appearance</description>
<properties read="true" const="true" />
<!-- 1024: Generic Glucose Meter, Generic category -->
<value type="hex">0400</value>
</characteristic>

</service>

Figure 9: GAP service

Characteristic = UUID Support Security Properties
Device name 2A00 UTF8 Mandatory None Read (optionally write)
Appearance 2A01 16-bit Mandatory None Read

Table 4: GAP service description

If the device name needs to be changeable by the remote device, then the write property should be enabled.

Silicon Labs
Page 18 of 43

5.3.2 Glucose Service

The sensor is the device implementing the GATT Server, so it must also implement the Glucose service.

The Glucose service is defined as below:

Characteristic Length Support Security Properties
Glucose Measurement 2A18 Variable Hex Mandatory | None Notify

(max 17B)

Variable . .
Glucose Measurement Context 2A34 (max 17B) Hex Optional None Notify
Glucose Feature 2A51 | 2 bytes Hex Mandatory | None Read

. Variable Writeable with . .

Record Access Control Point 2A52 (typical 2B) Hex Mandatory Authentication Write, Indicate

Table 5: Glucose Service description

The Glucose Service is created by adding the code below to the gatt.xml file:

<!-- 1808: org.bluetooth.service.glucose -->
<service uuid="1808" advertise="true">

<description>Glucose Service</description>

<characteristic uuid="2A18" id="c glucose measurement">
<description>Glucose Measurement</description>
<properties notify="true" />
<value length="17" variable="true" />

</characteristic>

<characteristic uuid="2A34" id="c_glucose_measurement context">
<description>Glucose Measurement Context</description>
<properties notify="true" />
<value length="17" variable="true" />

</characteristic>

<characteristic uuid="2A51" id="c_glucose_ feature">
<description>Glucose Feature</description>
<properties read="true" const="true" />
<value length="2" type="hex">07FF</value>

</characteristic>

<characteristic uuid="2A52" id="c_record access_control point">
<description>Record Access Control Point</description>
<properties indicate="true" write="true" authenticated write="true" />
<value length="17" variable="true" />

</characteristic>

</service>

Figure 10: Glucose Service (sensor only)

The Glucose service is explained below:

e First, the advertise="true” option is needed for the for the <service> tag. When the sensor advertises,
the UUID of the glucose service (0x1808) is included in the data field of the advertisement packets, so
the device can be easily identified by the demote devices. Many devices (including iPhones/iPads) often
filter scans based on UUID, so if this is not included in the advertisement packet, your device will not be

seen by the collector.

e Each attribute is given an id field (e.g. “c_glucose_measurement”), which is used in the included
BGScript code for a named reference to the numeric attribute handle. Numeric handles are assigned

Silicon Labs

Page 19 of 43

http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.glucose_measurement.xml
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.glucose_measurement_context.xml
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.glucose_feature.xml
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.record_access_control_point.xml

during the compile process based on the structure of the GATT database, so it is helpful to use named
references instead so that you do not need to know the handles beforehand. There is no official naming
convention requirement for these IDs. The only requirement is that they must be alphanumeric (letters,
numbers, and underscore characters only), and they must not overlap with any BGScript keywords.

Read, write, and notify properties are enabled on the various attributes as required by the service
specification. Using notify means that the collector will be able to “subscribe” (enable notifications) to this
attribute, and then any value updates done by the sensor will be automatically pushed out to the
collector. Indications and notifications are the same except that indications are acknowledged by the
remote end, while notifications are not (similar to the difference between TCP and UDP within the IP
network protocol). Note that on the “c_record access_control_point” attribute, both write and
authenticated_write are present. This is required; you cannot use simply authenticated_write without
also enabling write.

Silicon Labs

Page 20 of 43

5.3.3 Summary

The full GATT database implementation is shown below. The source code in the demo project has additional
comments which explain the specification requirements and actual values used in much more detail.

<?xml version="1.0" encoding="UTF-8" ?>
<configuration>
<service uuid="1800" id="generic_access">
<description>Generic Access</description>
<characteristic uuid="2A00" id="c_device_name">
<description>Device Name</description>
<properties read="true" const="true" />
<value>BGT Glucose Demo</value>
</characteristic>
<characteristic uuid="2A01" id="c_appearance">
<description>Appearance</description>
<properties read="true" const="true" />
<value type="hex">0400</value>
</characteristic>
</service>
<service uuid="180A" id="device_information">
<description>Device Information</description>
<characteristic uuid="2A29" id="c_manufacturer_ name">
<description>Manufacturer Name</description>
<properties read="true" const="true" />
<value>Bluegiga</value>
</characteristic>
<characteristic uuid="2A24" id="c_model number">
<description>Model Number</description>
<properties read="true" const="true" />
<value>BG-BLE-GLUCOSE</value>
</characteristic>
<characteristic uuid="2A25" id="c_serial number">
<description>Serial Number</description>
<properties read="true" const="true" />
<value>123456789</value>
</characteristic>
<characteristic uuid="2A27" id="c_hardware revision_string">
<description>Hardware Revision String</description>
<properties read="true" const="true" />
<value>H1.0.0</value>
</characteristic>
<characteristic uuid="2A26" id="c_firmware_ revision_string">
<description>Firmware Revision String</description>
<properties read="true" const="true" />
<value>F1.0.0</value>
</characteristic>
<characteristic uuid="2A28" id="c_software revision_string">
<description>Software Revision String</description>
<properties read="true" const="true" />
<value>S1.0.0</value>
</characteristic>
<characteristic uuid="2A23" id="c_system_id">
<description>System ID</description>
<properties read="true" const="true" />
<value type="hex">112233FFFE778899</value>
</characteristic>
</service>
<service uuid="1808" advertise="true">
<description>Glucose Service</description>
<characteristic uuid="2A18" id="c_glucose_measurement">
<description>Glucose Measurement</description>
<properties notify="true" />
<value length="17" variable="true" />
</characteristic>
<characteristic uuid="2A34" id="c_glucose_measurement_context">
<description>Glucose Measurement Context</description>
<properties notify="true" />
<value length="17" variable="true" />
</characteristic>
<characteristic uuid="2A51" id="c_glucose_feature">
<description>Glucose Feature</description>
<properties read="true" const="true" />
<value length="2" type="hex">07FF</value>
</characteristic>
<characteristic uuid="2A52" id="c_record_access_control_point">
<description>Record Access Control Point</description>
<properties indicate="true" write="true" authenticated write="true" />
<value length="17" variable="true" />
</characteristic>
rvice>
rvice uuid="180F" id="battery service">
<description>Battery Service</description>
<characteristic uuid="2A19" id="c_battery_ level">
<description>Battery Level</description>
<properties read="true" notify="true" />
<value length="1" type="hex" />
</characteristic>
</service>
</configuration>

Figure 11: Glucose Sensor Profile GATT database
Silicon Labs
Page 21 of 43

5.4 Application Configuration (config.xml)

The config.xml file contains the application configuration for BLE112 device. This file is not mandatory for
your project since all of the default values are typically acceptable, but it is useful for specific requirements
such as script timeout control (as below) or UART optimization settings.

<?xml version="1.0" encoding="UTF-8" 2>
<config>

<script timeout value="0" />
</config>

Figure 7: Application configuration for Glucose Sensor

e <script_timeout> Disables script timeout. This generally not advisable without a specific reason,
but in this implementation, accessing the stored records through the Record
Access Control Point attribute can take more than the default number of
allowed script operations to complete, especially if there are a large number of
stored records. This is therefore used to ensure that all stored records may be
retrieved without issue. The default value (1000) is enough for only about 10
records.

The other settings available in config.xml are not necessary for this demo.

Silicon Labs
Page 22 of 43

5.5 BGScript for Glucose Sensor (glucose_sensor.bgs)

The example implements a standalone glucose sensor device where no external host processor is needed.
The Glucose sensor application is created as a BGScript script application and the BGScript code is explained
in this chapter.

BGScript uses an event-based programming approach. The script is executed when an event takes place,
and the programmer may register listeners for various events.

The glucose sensor BGScript application uses the following event listeners:

5.5.1 System: Boot event (system_boot)

When the system is started or reset, a system_boot event is generated. This event listener should be the
entry point for all the BGScript applications, and provides a perfect opportunity for initializing any required
variables.

In the glucose sensor demo, the following tasks take place in the system_boot event handler:

Initialize status tracking variables and tick counter

Set up GPIO interrupts for catching button presses

Enable bonding

Begin advertising

Start a 1-second continuous timer

Load information from public store (PS) keys concerning stored records
Initialize battery level characteristic to 95% (testing value)

Output debug boot data to UART

Initialize DKBLE112 LCD and display status

The actual project source code contains this code along with many detailed comments.

5.5.2 Bluetooth: Connection event (connection_status)

When the Bluetooth connection is established a connection event occurs. For this purpose, an event listener
is added to the BGScript code which tracks the connection status, sends debug data out the UART port, and
updates the LCD appropriately.

Note: because bonding is used, when a collector bonds with the sensor, a second connection_status event
will be fired when the connection becomes ecrypted. Ifiwhen this occurs using this demo, the LCD will be
updated again to show “Encrypted” instead of simply “Connected”. Remember that you will not be able to
access stored records using the Record Access Control Point if the connection is not encrypted.

5.5.3 Bluetooth: Disconnection event (connection_disconnected).

If the Bluetooth connection is a lost, a disconnection event occurs. For this purpose, an event listener is added
to the BGScript and it does almost the same as the boot event listener; it sets the application state and
restarts the advertisement procedure.

Note: a Bluetooth Low Energy device will not automatically resume advertising when a connection is lost. It
will be put into an idle state. If you want the device to resume advertising (typically desirable), you must
explicitly do this.

Silicon Labs
Page 23 of 43

5.5.4 Data: Receiving control data from the remote device (attributes_value)

The ATTribute protocol is used to transmit data over a Bluetooth connection. A remote device can use an ATT
write operation to write up to 20 bytes of data. With the glucose sensor demo, only one attribute is writable,
the “Record Access Control Point.” Therefore, in this project, the attributes_value event will only occur then if
the connection is encrypted (since authenticated write is required for this attribute).

The BGSciprt code checks to make sure the attribute handle matches the c¢_record_access_control_point
value first (not technically necessary in this case since only one attribute is writable, but very good practice),
and then parses the value written. This attribute is used for sending commands such as “Report stored
records” or “Delete stored records.” The glucose profile describes many possible commands, but for this
demo, only the “Report stored records” command is implemented (opcode value = 0x01).

According to the profile specification, the first byte of the value written to the attribute is the opcode value, and
the second byte is the operator. When the “Report stored records” opcode is used, the operator byte
controls which records should be reported. For this deom, only the “All records” (operator = 0x01), “First
record” (operator = 0x05), and “Last record” (operator = 0x06) are implemented, since these are the only
operations implemented in the nRF demo iOS app.

In this project, records are stored in a ring buffer implemented using the PS key storage space provided right
on the BLE112 module itself. There are 128 key slots available, each holding up to 32 bytes. The first key is
available at address 0x8000, and the last one at 0x807F. The last slot (0x807F) is used for storing the
configuration data and stored record count, leaving 127 more slots. The first record is stored in 0x8000, the
second in 0x8001, and so on. When 0x807E is reached, the next record will be stored on 0x8000. The ring
buffer is maintained using a “head” index variable and a “record count” variable.

Each glucose reading generates a 17-byte measurement value and a corresponding 16-byte measurement
context value. This is a total of 33 bytes, which is too big to fit in a single 32-byte PS key. Therefore, the final
two bytes of the measurement value (which is the “status” subfield of the value) are not stored. In an ideal
implementation, this would not be necessary.

The First/Last/All buttons in the nRF demo app each write a value to this attribute, and the resulting operation
is done inside the attributes_write event handler. This involves reading the requested record(s) from the PS
key storage area, then writing the measurement and measurement context values to the local GATT
attributes, which subsequently pushes them to the connected client using notifications.

For detail on exactly how this is done, refer to the project source code and comments.

5.5.5 10: Detecting button presses (hardware_io_port_status)

For controlling the behavior of the sensor, this project makes use of two buttons on the DKBLE112 board.

e PO _0is used to trigger a new glucose reading (using the ADC value read through the potentiometer
also on the DKBLE112).

e PO_1is used to reset all stored records and bonding information, if present.

Pressing the buttons on the DKBLE112 momentarily brings those lines to a logic HIGH state. These signals
are configured to generate interrupts by the following line back in the system_boot event handler:

call hardware_io_port_config_irq(o, 3, 9)

The first parameter specifies the port, the second is the bitmask for which pins to enable interrupts on, and the
third is the rising or falling edge setting. Interrupts can currently only be enabled on Port 0 and Port 1. The
parameters used in the command above are as follows:

0=Port0
3 =0b00000011, bits 0 and 1 are set, so interrupts enables on Pin 0 and Pin 1 of Port 0
0 = Rising edge

Remember that in hardware.xml, we also configured Port 0 to be pulled down, so that the rising edge will be
more reliably detected. The 1/O signals are not de-bounced in this demo.

Silicon Labs
Page 24 of 43

The PO_0 button press initiates an ADC read, which triggered immediately but takes a few milliseconds to
complete. Therefore, the ADC read generates another event (hardware_adc_result) which we also catch.
Although we only use one simultaneous or consecutive ADC read operation in this project, note that multiple
ADC reads must be cascaded such that the second is not triggered until the first completes.

The PO_1 button press manually clears all bonding entry storage slots, sets the stored record count to zero,
and moves the record storage ring buffer head index back to the beginning. It does not actually erase the PS
key values, since this is not necessary.

5.5.6 Timer: 1-second clock tick (hardware_soft_timer)

For basic 1-second “tick” tracking, we enabled the soft timer back in the system_boot event handler with the
following line:

call hardware_set_soft_timer(5 0, 0)

The first parameter specifies the interval relative to the main oscillator, which is 32768 Hz. The timer ticks
every (value / 32768) seconds, which in this case is exactly 1 second. The accuracy of this timer is +/-
30ppm, so it is suitable for basic tick tracking of this kind.

The second parameter is the assigned timer handle (should always be “0” in the v1.1 SDK), and the third is
whether it is repeating (0) or single shot (1). We want it to fire every second, so it is configured to be
repeating.

Inside the timer event handler, we mainly do simple animation on the SPI LCD on the DKBLE112 to indicate
activity or revert temporary status messages back to the default “Advertising” or “Connected” or “Encrypted”
message. While advertising, a single “?” character will blink on and off once per second. While connected (or
encrypted), it will alternate between the “+” and “*” characters.

This event handler also triggers a battery level ADC reading, which is used to update the c_battery_status
attribute value when obtained later in the hardware_adc_result handler. The internal battery level ADC
channel is 15.

5.5.7 ADC Result: Battery and Glucose measurement (hardware_adc_result)

This event is triggered when the previously requested ADC read operation completes. We handle two specific
cases in this demo: the battery value, and the potentiometer value used to emulate a glucose concentration
reading. A real glucose sensor would use actual hardware capable of detecting the glucose concentration in a
blood sample. Since this hardware is not available on our dev kit, we use the potentiometer connected to
PO_6 instead.

The battery level is computed from the ADC read range (0-32768) and scaled to the required 0-100 level,
where 0% = 2.0v and 100% = 2.52v (determined empirically with a fresh CR2032). This single byte is written
to the c_battery_level attribute, which is then notified to or read by the collector as desired.

The glucose measurement and context values are more complex, but built one byte at a time in great detail in
the BGScript code according to the glucose service definition. The particular structure of these two values
depends on which features are implemented on the glucose sensor itself. For this demo, we emulate all
available features that are described by the specification.

Silicon Labs
Page 25 of 43

The 17-byte Glucose Measurement attribute is built with the following data:

Byte(s) | Field Name Data Type Demo Value Notes

Time Offset field enabled

Glucose Concentration units are kg/L
Type field enabled

0 Flags 8-bit hex 0x1B Sample location field enabled
Sensor Status field enabled

Context Information enabled
(sent via Glucose Measurement Context attribute)

1:2 Sequence Number 16-bit hex Variable Starts at 0, increments for each new reading

3:4=year, 5=month, 6=day,

3:9 Base Time 7-byte hex Variable 7=hour, 8=minute, 9=second
YYYYMMDDHHMmMss
10:11 | Time Offset 16-bit hex Variable Seconds to offset from Base Time value

Glucose Concentration

12:13 (kg/L) 16-bit SFLOAT | Variable Depends on DKBLE112 potentiometer setting
14 [7-4] | Type field 4-bit hex 0x1 0x1 = Capillary Whole Blood

14 [3-0] | Sample Location 4-bit hex 0x1 0x1 = Finger

15:16 | Sensor Status 16-bit hex 0x0000 0 indicates no error

Table 6: Glucose Measurement Structure

The 17-byte Glucose Measurement Context attribute is built with the following data:

Byte(s) | Field Name Data Type Demo Value Notes

Carbohydrate ID enabled
Carbohydrate units are kg

Meal enabled

Tester enabled

Health enabled

Exercise Duration enabled

Exercise Intensity enabled
Medication ID enabled

Medication units are kg

HbA1C precise percentage enabled

0 Flags 8-bit hex Ox5F

1.2 Sequence Number 16-bit hex Variable Must match corresponding measurement

3 Carbohydrate ID 8-bit hex 0x03 0x03 = Dinner

O0xE113 = 2.75 kg in SELOAT format

4:5 Carbohydrate (kg) 16-bit SEFLOAT | Ox13E1 (051110 0001 0001 0011, little endian)

Silicon Labs
Page 26 of 43

http://en.wikipedia.org/wiki/Half-precision_floating-point_format#IEEE_754_half-precision_binary_floating-point_format:_binary16
http://en.wikipedia.org/wiki/Half-precision_floating-point_format#IEEE_754_half-precision_binary_floating-point_format:_binary16
http://en.wikipedia.org/wiki/Half-precision_floating-point_format#IEEE_754_half-precision_binary_floating-point_format:_binary16

6 Meal 8-bit hex 0x02 0x02 = Postprandial
7[7:4] | Tester 4-bit hex 0x2 0x2 = Health Care Professional
7 [3:0] | Health 4-bit hex 0x4 0x4 = Under Stress

8:9 Exercise Duration 16-bit hex 0x1E00 0x001E = 30 seconds (little-endian)

10 Exercise Intensity 8-bit hex 0x64 0x64 = 100% (range = 0-100)

11 Medication ID 8-bit hex 0x02 0x02 = Short acting insulin
12:13 | Medication (kg) 16-bit SELOAT | OXO5EOQ ?XE10101502086%50'§’015‘ (%Jﬂr%?;n)
14:15 | HbAlc (%) 16-bit SELOAT | Ox1DE2 (()XElzlll% 331‘818/851 %ﬁﬂ&”ﬁfw)

Table 7: Glucose Measurement Context Structure

These two attributes are built field-by-field in the hardware_adc_result event handler. All of the field values in
both attributes are static (which they would not be in a real glucose sensor), with the exception of the
sequence number, glucose concentration value, and time offset. The time offset field value is set to whatever
the sequence number is, which gives the effect that each glucose measurement appears to be take one
second after the previous one.

For a detailed look at how this code actually works, refer to the “glucose_sensor.bgs” BGScript source file.

Silicon Labs

Page 27 of 43

http://en.wikipedia.org/wiki/Half-precision_floating-point_format#IEEE_754_half-precision_binary_floating-point_format:_binary16
http://en.wikipedia.org/wiki/Half-precision_floating-point_format#IEEE_754_half-precision_binary_floating-point_format:_binary16
http://en.wikipedia.org/wiki/Half-precision_floating-point_format#IEEE_754_half-precision_binary_floating-point_format:_binary16
http://en.wikipedia.org/wiki/Half-precision_floating-point_format#IEEE_754_half-precision_binary_floating-point_format:_binary16

5.6 Compiling and Installing the Firmware

5.6.1 Using BLE Update tool

When you want to test your project, you need to compile the hardware settings, the GATT data base and
BGScript code into a firmware binary file. The easiest way to do this is with the BLE Update tool that can be
used to compile the project and install the firmware to a Bluetooth Low Energy Module using a CC debugger
tools

In order to compile and install the project:
1. Connect CC debugger to the PC via USB
Connect the CC debugger to the debug interface on the BLE112 or BLE113
Press the button on CC debugger and make sure the led turns green
Start BLE Update tool
Make sure the CC debugger is shown in the Port drop down list

Use Browse to locate your project file (for example BLE113-project.bgproj)

N o g ks oD

Press Update

BLE Update tool will compile the project and install it into the target device.

.
() BLE Update . - - C=RAC

BGBuild

Port | cc Debugger (6566) v|| Refresh || o |

File |u:|'|,BIuegiga'|,bIe-1.Z.D-B?'n,example'n,EGDemo'n,BLE113-prnject.bgproj|’ Browse]

License key

Figure 12: Compile and install with BLE Update tool

Note:
You can also double clikc the .BGPROJ file and it will automatically open the BLE Update tool.

If you have BLE113 Development Kit v.1.2 the CC debugger component is already placed on the kit and you
simply need to:

e Connect the DEBUGGER USB port to the PC
e Turn the DEBUGGER switch to MODULE
e Press the RESET DEBUGGER button and make sure the DEBUGGER led turns green

Silicon Labs
Page 28 of 43

The View Build Log opens up a dialog that shows the bgbuild compilere output and the RAM and Flash
memory allocations.

[() BGBuild log ERR)

Core BAM end @ 0x00k50 2898
Top of BRBM @ O0x01£00 Ta38
BEAM left for data = 0x0l3k0 5040
Attribute EBEAM - 0x0000%9 5
Connections 1 - 0x001594 404
BR2M for packet buffers 118 - O0x0l11fa 4802
Flash Memory

Core flash reserved @ 0x18000 98304
Top of flash @ O0x1£800 129024
Flash left for data = 0x07800 30720
Common configuration - 0x00070 112
1l bit UUIDs - 0x00014 20
128 bit UUIDs - 0x000Z20 3z
Attribute database - 0x0005a 40
Constant attributes data - 0x0005k 51
USE descriptor - 0x000ce 158
BEScript - 0x0008k 139
Flash for PS5 Store 14 - 0=x07000 28872

Figure 13: BLE Update build log

Silicon Labs
Page 29 of 43

5.6.2 Compiling Using bgbuild.exe

The project can also be compiled with the bgbuild.exe command line compiler. The BGBuild compiler simply
generates the firmware image file, which can be installed to the BLE112 or BLE113.

In order to compile the project using BGBuild:

1. Open Windows Command Prompt (cmd.exe)
2. Navigate to the directory where your project is
3. Execute BGbuild.exe compiler

Syntax: bgbuild.exe <project file>

&

BN C\Windows\system32\cmd.exe s - C l = =] |i3-]

C:~Mikko“Bluegiga~hle—1.2_8-8".example~BGDemoX>._._~..~“bin“~bhgbuild.exe BLE113-proje
ct.bhgproj

BxAAL5SA
BxA1faE
BxA13hA
Attribute RAM BxBARAT
Connections BxAA174
RAM for packet buffers BxAlifa

Flazh Memory

Bx1 8088
Bx1f88a
BxA7886
BxAAA7A
BxAaE1 4
BxAAA2A
BxAAA5a
BxAAA5h
AxABAc 6

Core flash reserved

Top of flash

Flazh left for data
Common configuration

16 hit UUIDs

128 hit UUID=s

Attribute databhase
Constant attributes data
USB descriptor

BGScript BxBAA5h

Flazh for PS5 Store 14 BxA7080 28672

C:~Mikko~Bluegiga~hle—1.2.8-8"example~BGDemo >

I O O I 01

Figure 14: Compiling with BGBuild.exe

If the compilation is successful a .HEX file is generated, which can be installed into a Bluetooth Low Energy
Module.

On the other hand if the compilation fails due to syntax errors in the BGScript or GATT files, and error
message is printed.

Silicon Labs
Page 30 of 43

5.6.3 Installing the firmware with TI's Flash Tool
Texas Instruments flash tool can also be used to install the firmware into the target device using the CC
debugger.
In order to install the firmware with Tl flash tool:
1. Connect CC debugger to the PC via USB
Connect the CC debugger to the debug interface on the BLE112
Press the button on CC debugger and make sure the led turns green
Start Tl flash tool tool
Select program CCxxxx SoC or MSP430
Make sure the target device is recognized and displayed in the System-on-Chip field
Make sure Retain IEEE address.. field is checked

Select the .HEX file you want to program to the target device

© ©® N o g &~ w D

Select Erase, Program and Verify

10. Finally press Perform actions and make sure the installation is successful

QI Texas Instruments SmartRFE Flash Programmer Y)

7 What do you want to program?
‘U TEXAS |Program CCwx 5ol or MSPA30 j
INSTRUMENTS

System-on-Chip l MSP430]

EE ID | Chip type | EB type EEB firmware 1D | EB firmware ey

2814 CC2540 CC Debugger

Fast

Flash image: |E:\Users\taddeen\Desktop\ble-‘l.‘I.0-49\exampIe\cable_replacement\out.htJ J

Location

* Primary " Secondary | [EEE 0Ox

[+ Retain IEEE address when reprogramming the chip

Wiew Info Page |

Actions

Flash lock. [effective after program.append]:

r

ADTHOND

| CC2540 - [D2814: Verifying flash [bytewise check)...
EREREENENNNNNERENENENENERERENNENNENNEDN

Figure 15: TI’s flash programmer tool

Note:

Tl Flash tool should NOT be used with the Bluegiga Bluetooth Smart SDK v.1.1 or newer, but BLE Update tool
should be used instead. The BLE112 and BLED112 devices contain a security key, which is needed for the
firmware to operate and if the device is programmed with TI flash tool, this security key will be erased.

Silicon Labs
Page 31 of 43

5.7 Testing the Glucose Sensor

5.8 Testing with BLEGUI software

This section describes how to test the Glucose Sensor application with BLEGUI software.

5.8.1

As soon as the Glucose Sensor is powered on, it starts to advertise itself. At this point, a BLED112 USB

Discovering the Glucose Sensor

dongle can be used to detect the glucose sensor using the BLEGUI software.

Preparations:

1.

2
3.
4

Connect BLED112 USB dongle to a PC
Start BLEGUI software
Select the correct COM port from the drop down menu and press Attach

Execute the Command - Info command to make sure the communication works

Discovering the Glucose Sensor:

1. Set desired scan parameters, check Active Scanning box and press Set Scan Parameters button
2.
3.

Select Generic scanning mode and Start scanning

If the glucose sensor is powered on, in range, and not connected, it should appear in the main view.

(%1 MainWindow (=) =]]

Tools Commands Config

i |_mefiesh | [Blusgiga Bluetaath Law Energy (COM10) | (256000][Detach | [Connected
Mode
Discoverable Public; 00;07:80:81;44:94
Connectable BGT Glucose Demo RSSI: -48dBm | Update Encrypt GATT
Set Mode General No_BREDR Connectable undirected

Clear Mode

Channel Map [¥] 37 38 39

Set Adv Parameters

>
&
8

5.
i
i
B
2
]
3

a

5]
&

Scan
@) Limited
@ Generic

Observation

Start
Stop

Scan Interval 125.00ms 200

| [P

Scan Window 125.00ms 200

Active Scanning

Set Scan Parameters

Log

Interval 60 |+ 75.00ms Tmeout 105 || 1050ms Latency 0 =

2013.01.19 21:37:29.0677 ble_svt_gap_scan_response rssi:-43 packet_type: 0 sender:344481800700 address_type: 0 bond:ff data:02010603030518

2013.01.19 21:37:29.0678 RX: 30120600d00094445 180070000ff07020106030308 18

2013.01.19 21:37:29.0686 ble_evt_gap_scan_response rssi:-48 packet_type: 4 sender:944431800700 address_type: 0 bond:ff data: 110942475420476c75636736520446 56d6f
2013.01.19 21:37:29.0687 RX: 801d0600d00434448 180070000fF12110942475420476c 756 36f73652049656d6F

2013.01.19 21:37:29.0707 ble_evt_gap_scan_response rssi:-48 packet_type: 0 sender:94448 1800700 address_type: 0 bond:ff data:02010603030818
« i

¥
0001030700 Show: Comm Text Scroll |Copy to Clipboard

Figure 16: Scanning for the Glucose Sensor

Silicon Labs

Page 32 of 43

5.8.2 Establishing a Bluetooth connection

1. Press the Connect button located next to the device you want to connect to.
a. If the connection is successful, the connect button will change to Disconnect.

b. If the connection fails, an error message will appear in the Log view.

Public: 00:07:30:51:44:94

BGT Glucose Demo RSSI: -50 dBm Update

Connected handle:0x0

Figure 17: Connected to Glucose Sensor

2. Open the Tools = Security Manager dialog and check the “Bondable” option.

[53 Dialog (2 [z |
INoInpuNoOutput - J

[7] Man-in-the-middle

Minimum Key Size

7

LlLd

Eondable

[Set Parameters l

I Passkey Entry I

b

Figure 18: Glucose Profile roles

3. Click the “Set Parameters” button in the dialog to enable bonding, then close the dialog.

4. Press the Encrypt button located between the Disconnect button and GATT button. This will bond
the BLED112 with the BLE112 running the glucose sensor project.

a. If encryption is successful, you will see the following entry appear in the Log view:
2013.01.19 22:08:49.0912 ble_rsp_sm_encrypt_start handle: 0 result: O ['No Error]

b. If the connection fails, an error message will appear in the Log view.

Silicon Labs

Page 33 of 43

5.8.3 Discovering services
Once you’ve connected to a device, you can use the ATTribute protocol to discover what services it supports.
To discover the services of the glucose sensor:

1. Pressthe GATT button of the device you’ve just connected in order to start the GATT tool.

2. Press Service Discover button to start a GATT primary service discovery procedure.

F ™
7] MainWindow LJ@ E‘E‘ﬂ
Tools Commands Config
GAP
[Refresh] [Eluegiga Bluetooth Low Energy {COM10) v] [256000 V] [Detach] -
Mode
Discoverable Public: 00:07:30:3 L:44:94
Connectable |Undirected - BGT Glucose Demo RSSI: -50 dBm [Disconnect] [Encrypt] [GATT J
[Set Mode] Connected handle:0x0
GATT
[Clear Mode]
Adv Interval 1280.00ms 2048 = Handle Group End Uuid Description Raw Value Clear
Channel Map [¥] 37 38 39 1 7 1800 Generic Access [l
Set Adv Parameters] 8 29 180a Device Informa... Characteristic Discover i
Scan 30 45 1808 Descriptors Discover |
() Limited 46 65535 1a0f Battery Service
@ Generic ReadlLong
i (C) Observation
'
[Start] |
Write Command
[stop)
ScanInterval 125.00ms 200 |5
Scan Window 125.00ms 200 |5
Active Scanning |
Set Scan Parameters
Interval 60 |%] 75.00ms Timeout 105 |2 1050ms Latency 0 &
Log
2013.01.19 21:37:54.0780 ble_evt_attdient_group_found connection: 0 start: 1e end: 2d uuid:0818 i |
2013.01.19 21:37:54.0786 RX: 30050402001e002d000208 18
2013.01.19 21:37:54.0879 ble_evt_attdient_group_found connection: 0 start: 2e end:ffff uuid:0f18
2013.01.19 21:37:54.0881 RX: 80030402002e00ffff020f18 |_|
2013.01.19 21:37:54.0890 ble_evt_attdient_procedure_completed connection: 0 result: 0 [Mo Error] chrhandle: 0 -
4 m | +
0001030700 Show: [¥] Comm (] Text [7] Scroll [Copy to Clipboard| | Clear |
— — — —

Figure 19: GATT service discovery

The four services defined in the gatt.xml should be visible in the GATT tool.

Silicon Labs

Page 34 of 43

5.8.4 Subscribing to Notifications for Glucose Measurement and Context

The Glucose Measurement and Glucose Measurement Context attributes cannot be read directly, but only
push new data out via notifications. Notifications are not enabled by default, and must be enabled explicitly.
Notification settings (and indication settings) are set per-client, and will only persist between disconnections if
a client has been bonded. Otherwise they must be re-enabled after disconnecting.

In order to enable the notifications:
1. Select the Glucose Service (UUID 1808) in the BLEGUI's GATT view
2. Press Descriptors Discover in order to see all characteristics and descriptors in the glucose service

3. Once the descriptors discovery is complete, select the Client Characteristic Configuration (UUID:
2902) value that relates to the Glucose Measurement (UUID: 2A18) and select it

4. In order to enable notifications for the Glucose Measurement, enter a “1” in the text box below the
GATT table, then click Write to write the value to the Client Characteristics Configuration.

5. Finally, make sure the write operation is executed properly (see Log)

Repeat steps 3 & 4 for the Glucose Measurement Context (UUID: 2A34) Client Characteristic
Configuration (UUID 2902) to enable notifications for that attribute as well.

rﬂ MainWindow @J l_‘_‘—J':' E] ﬁ1
Tools Commands Config
ZS [Refresh] [Bluegiga Bluetooth Low Energy {COM10) v] [256000 V] [Detach] -

Mode
Discoverable Public: 00:07:80:81:44%:94
Connectzble BGT Glucose Demo RSSL: -50 dBm [Dsconnect | [Encrypt | [eam]
[Set Mode] Connected handle:0x0
[Clear Mode] Gar
Adv Interval 1230.00ms 2048 | = Handle Group End Uuid Description Raw Value ~ Clear
Channel Map [¥] 37 33 39 32 2alé

Set Adv Parameters) 3 201 Characteristic U... T
7 3 2902 Client Characte... E
) Limited 35 2803 GATT Character... i
@ Generic e 2334
[Opsenaton o] 37 2001 Characteristic U...

r
= - -}
Scan Interval 125.00ms 200 (% 1
Scan Window 125.00ms 200 |5
Active Scanning

Set Scan Parameters

Interval 60 |%] 75.00ms Timeout 105 |2 1050ms Latency 0 &

Log

2013.01.19 22:57:40.0740 ble_cmd_attdient_attribute_write connection: 0 atthandle: 26 data:01
2013.01.19 22:57:40.0742 T¥: 000504050026000101

2013.01.19 22:57:40.0763 ble_rsp_attdient_attribute_write connection: 0 result: 0 [MNo Error]
2013.01.19 22:57:40.0764 RX: 00030405000000 |_|

2013.01.19 22:57:40.0830 ble_evt_attdient_procedure_completed connection: 0 result: 0 [Mo Error] chrhandle: 26 -
4 1l | 3
0001030700 Show: [¥] Comm (] Text [7] Scroll [Copy to Clipboard| | Clear |

Figure 20: Enabling notifications

Silicon Labs

Page 35 of 43

5.8.5 Testing Glucose Measurements
Now that we have connected, bonded, and enabled notifications, we can test to make sure the measurements
are being taken and sent correctly.
In order to test measurements:
1. Press the PO_0 button on the DKBLE112 (or, if not using the DK, momentarily bring PO_0 HIGH).
2. You should see two new values come in below in the Log view, and:

o One new value will appear in the “Raw” column of the 2A18 attribute (measurement).
Example: 1b0400d9070718101e00040014a7110000

o One new value will appear in the “Raw” column of the 2A34 attribute (context).
Example: 5f04000313e10224001e640205e01de200

3. Verify from Log view that no error is received.

:

.
0 inWi =i

5| MainWindow pr— - =

Tools Commands Config

GAP

[Refresh] [Bluegiga Bluetooth Low Energy {COM10) v] [256000 V] [Detach] -
Mode
Discoverable Public: 00:07:80:81:44%:94
Connectable BGT Glucose Demo RSSI: -50 dBm [Disconnect | [Encrypt | [eAm.]
[Set Mode] Connected handle:0x0
[Clear Mode] Gar
Adv Interval 1280.00ms 2048 = Handle Group End Uuid Description Raw Value = Clear
Channel Map [¥] 37 [@] 38 [¥] 39 32 2al8 1b0300d907071...
Set Adv Parameters] 33 2901 Characteristic U... || |characteristic Discover
S El 2902 Client Characte... E
© Limited 3 2803 GATT Character.. L
Generic 36 2434 5f03000313€102...
() Observation -
37 2901 Characteristic U...
[Start]
[Stop] -
Scan Interval 125.00ms 200 5 1
Scan Window 125.00ms 200 (%
Active Scanning

Set Scan Parameters

Interval 60 |%] 75.00ms Timeout 105 |2 1050ms Latency 0 |=

Log

2013.01.19 21:48:03.0446 ble_evt_attdient_procedure_completed connection: 0 result: 0 [Mo Error] chrhandle: 26 i
2013.01.19 21:48:03.0448 RX: 5300504010000002600

2013.01.19 21:48:21.0671 ble_evt_attdient_attribute_value connection: 0 atthandle: 20 type: 1 value:1b0300d907071810 12000300 1457110000

2013.01.19 21:48:21.0673 RX: 801604050020000111160300d30707181012000300 1427110000 F
2013.01.19 21:48:21.0679 ble_evt_attdient_attribute_value connection: 0 atthandle: 24 type: 1 value:5f03000313e10224001e540205e01de200

4 m] +
0001030700 Show: [¥] Comm [] Text [¥] Scroll [Copy to Clipboard| | Clear |
e ——

Figure 21: Receiving glucose measurements and context updates

Silicon Labs

Page 36 of 43

5.8.6 Testing the Record Access Control Point with BLEGUI

The Record Access Control Point is used to access any stored measurements on the glucose sensor. After
pressing the PO_0 button a few times to take sample measurements, you can send a “Retrieve All Records”
command to test the record access method. It is difficult to see multiple records come in within the BLEGUI
interface since they are repeatedly notified into the same attribute sequentially, but you can verify in the log
that you receive multiple records.

In order to test record access:

1. Select the Record Access Control Point (UUID 2A52) attribute.

2. Type “0101” in the text box below the GATT table, then click the Write button.
3. You should see a set of notified values appear in the Log window.
4

If you see an error in the Log, verify that your “Bondable” setting is correct within the Tools 2>
Security Manager dialog, and verify that connection is in fact encrypted by clicking the “Encrypt”
button again.

You can test “Retrieve First Record” by using “0105” in step 2, or “Retrieve Last Record” by using “0106”.

Silicon Labs

Page 37 of 43

5.9 Testing with iPhone or iPad

There is an app created by Nordic Semiconductor for Bluetooth Smart enabled iOS devices (iPhone 4S/5,
iPad 3/4/Mini), which can be used to test the glucose sensor.

This section briefly describes how to test the glucose sensor BGScript project using an iPhone.

5.9.1 Getting the App

11:45 PM

You can find the app in iTunes here: https:/itunes.apple.com/us/app/nrfready-
utility/id497679111
Alternatively, you can open the App Store on your iPhone and search for “nrfready” to u e S s

find the app. Note that while the app will run perfectly well on an iPad, you may need to
specifically search for iPhone apps, because it isn’t currently built as a universal

app. ity

OPEN

5.9.2 Testing the App

Once you've installed the App to your iPhone or iPad, the following steps are required:

1. Power on the glucose sensor (for example DKBLE112)

2. If using the DKBLE112 with built-in peripherals, prepare the board as follows:
o Set POTENTIOMETER switch to ON
o Set ACCELEROMETER switch to OFF
o Set DISPLAY switch to ON
o Set RS232 switch to ON (if using UART debug output from the on-board DB9 port)
o Press the RESET DISPLAY button, then the RESET BLE112 button.

o You should now see “Glucose Demo / Advertising ?” on the LCD:

DISCONNECT CONNECT
& SWOFF < & W ON

POTENTIOMETER E m
(Ve

Figure 22: “Advertising” display on DKBLE112 LCD

3. Start the nRF Utility iPhone application:

nRF Utility

Silicon Labs
Page 38 of 43

https://itunes.apple.com/us/app/nrfready-utility/id497679111
https://itunes.apple.com/us/app/nrfready-utility/id497679111

4. Dismiss the disclaimer that appears.
5. Select the “Bluetooth Smart” item from the main welcome screen.

6. Tap the “BGM” icon from the list of services to enter the Blood Glucose Monitor screen.

7_ M Noroic 7]
W) NORDIC

P ¥ semicoNDUCTOR ” 7 ;)
J

PROXIMITY

Disclaimer:

This application is only for ULTRA LOW POWER WIRELESS SOLUTIONS y r
demonstration purposes and not for % 6
medical use.
e BIKING 8P 8GM

oK ANT+ >

Bluetooth Smart

h Smart
ordicsemi.com www.nordicsemi.com

Contact us

Powered by wam -

Figure 23: nRF Application Startup

7. Tap the gray “gear” icon near the top right corner to enter the Settings screen.
8. Slide the “Wildcard” option to ON.
9. Tap the gray “back arrow” icon near the top left, then click the “CONNECT” button.

5:57 PM S . ver

N NoroiC 7] H . N NoroIC ﬂ

BLOOD GLUCOSE

Proximity Wildcard
Last) OFF on @

Retrieve Records

Signal Eff: n/a
Dev ID: n/a

Sensor Info
Manage Connections

(3] Bluetogth
CONNECT

Figure 24: nRF Application Connection

(3] Bluetogth

e

DISCONNECT

Silicon Labs
Page 39 of 43

10. You should now be connected, but not yet bonded with the BLE112. If you are using the DKBLE112,
the LCD should show the following:

[18): 18 @ &

AR

e

Figure 25: “Connected” display on DKBLE112 LCD

11. If you have not already bonded with the BLE112 running the glucose sensor demo, you should see a
Bluetooth Pairing Request confirmation appear. Click the “Pair” button to bond. The DKBLE112 (if
present) will now show “Encrypted”, like this:

r \
m -‘m
b |t
B

Bluetooth Pairing Request

“BGT Glucose Demo” would like to

pair with your iPhone. ; -
dAEEEEERE

(R— - siaed
Pair Cancel " —am

U-}

Figure 26: App Bonding “Encrypted” display on DKBLE112 LCD

Note: if the pairing request does not appear at this point, you may need to do one or more of the
following operations:

o Go to the Bluetooth area of the Settings app on your iPhone and “Forget” the BGT Glucose
Demo device, if present.

o Turn Bluetooth off and then back on again on your iPhone.

o Completely power-cycle your iPhone (not usually required).

o Click the PO_1 button on the DKBLE112 board to reset all settings and erase bonding entries.
o Reflash the glucose sensor project onto your BLE112 (also clears bonding entries).

12. Press the PO_O button on the DKBLE112 to trigger a glucose reading. The app should show a new
record every time you press the button. You can affect the glucose concentration value by changing
the potentiometer. For a thorough test, make sure you trigger at least a few records.

Silicon Labs
Page 40 of 43

13. Tap the “First” button to retrieve the first stored record. Typically, the sequence number will be 0.
14. Tap the “Last” button to retrieve the last stored record.

15. Tap the “All” button to retrieve all records stored.

on = 6:06 PM 3)l .. Verizon = 6:06 PM

v i K3 S9nomee | m?‘m'c' ﬂ

> = BGM

BGM

Retrieve Records Retrieve Records Retrieve Records

SEQ: 0 TIME: 7/24/09, 4:30 PM SEQ: 2 TIME: 7/24/09, 4:30 PM SEQ: 0 TIME: 7/24/09, 4:30 PM >
SEQ: 1 TIME: 7/24/09, 4:30 PM >
SEQ: 2 TIME: 7/24/09, 4:30 PM >

EBIuetogm' EBIuetugm' Eﬂluetughly'

DISCONNECT DISCONNECT DISCONNECT

Figure 27: Stored Record Retrieval with nRF App

16. Tap on any record to show the record detail:

BLOOD GLUCOSE

Concentration: 181.20 mg/dL
Sequence: 2

Base Time: 7/24/09, 4:30 PM

Time Offset: 2 sec

sample Type: Capillary Whole
Sample Location: Finger

Status: 0

Figure 28: Glucose Record Detail View in nRF App

Silicon Labs
Page 41 of 43

6 External resources

e Bluetooth 4.0 software development kit is available at : www.bluegiga.com

e BLE112 and DKBLE112 hardware documentation is available at : www.bluegiga.com

e Heart Rate Profile can be downloaded from: Heart Rate Profile

e Bluetooth SIG’s developer portal: https://developer.Bluetooth.org/

Silicon Labs
Page 42 of 43

http://www.bluegiga.com/
http://www.bluegiga.com/
http://bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239865
https://developer.bluetooth.org/

Simplicity Studio

One-click access to MCU and wireless
tools, documentation, software, source
code libraries & more. Available for
Windows, Mac and Linux!

loT Portfolio SW/HW Quality Support & Community

www.silabs.com/loT www.silabs.com/simplicity www.silabs.com/quality www.silabs.com/community

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and “Typical”
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information.
Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or
the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly
grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class Ill devices, applications for which FDA
premarket approval is required, or Life Support Systems without the specific written consent of Silicon Labs. A “Life Support System” is any product or system intended to support or
sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military
applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or
missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of
a Silicon Labs product in such unauthorized applications.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®,
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, the Zentri logo and
Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM
Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of
their respective holders.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

USA

S I LI l: U N LA BS http://www.silabs.com

