

silabs.com | Building a more connected world. Copyright © 2023 by Silicon Laboratories Rev. 1.2

AN1200.1: iOS and Android ADK for
Bluetooth® Mesh SDK 2.x and Higher

This document describes how to get started with Bluetooth mesh
application development for iOS and Android smart phones and
tablets using the Silicon Labs Bluetooth Mesh for iOS and Android
Application Development Kit (ADK).

The document also provides a high-level architecture overview of the Silicon Labs Blue-
tooth mesh library, how it relates to the Bluetooth LE stack provided by the iOS and An-
droid operating systems and what APIs are available. It also contains code snippets and
explanations for the most common Bluetooth mesh use cases.

The Bluetooth mesh mobile app is intended to demonstrate the Silicon Labs Bluetooth
mesh technology together with the Bluetooth mesh SDK sample apps. The mobile app is
a reference app for the Bluetooth mesh mobile ADK but it should not be taken as a starting
point for customers to create their own mobile apps.

KEY POINTS

• Introduction to the Silicon Labs’ Blue-
tooth mesh for iOS and Android ADK

• Getting started with development
• ADK usage

 AN1200.1: iOS and Android ADK for Bluetooth® mesh SDK 2.x and Higher
 Contents

silabs.com | Building a more connected world. Rev. 1.2 | 1

Table of Contents

Introduction .. 1

Installation .. 2

2.1 Download.. 2

2.2 ADK structure.. 2

2.3 Setup iOS project .. 2

2.4 Setup Android project .. 4

Usage: basic use cases .. 5

3.1 Provisioning a Device (over GATT bearer) ... 5

3.2 Proxy Connection and Configuration .. 6

3.3 Binding Models ... 7

3.4 Sending the Message .. 8

Resources .. 9

4.1 Silicon Labs resources .. 9

4.2 Bluetooth SIG resources: ... 9

4.3 iOS: complying with Encryption Export Regulations .. 9

4.4 Android: known Bluetooth Issues ... 9

4.4.1 Scanning ... 9

4.4.2 Connecting .. 10

4.4.3 Managing a Connection ... 10

4.4.4 Errors .. 11

Open-Source Licenses Used .. 12

 AN1200.1: iOS and Android ADK for Bluetooth® mesh SDK 2.x and Higher
 Introduction

silabs.com | Building a more connected world. Rev. 1.2 | 1

1 Introduction

The iOS and Android (API version 27 or older) Bluetooth LE stacks do not have native support for Bluetooth mesh and therefore devices
with these operating systems cannot directly interact with Bluetooth mesh nodes using the Bluetooth mesh advertisement bearer. How-
ever, the Bluetooth mesh specification 1.0 also defines a GATT bearer, which enables any Bluetooth LE-capable device to interact with
Bluetooth mesh nodes over GATT. iOS and Android (since API version 18) have included support for the Bluetooth GATT layer, and
therefore it is possible to implement an iOS or Android application to provision, configure, and interact with Bluetooth mesh networks and
nodes.

Silicon Labs provides a Bluetooth mesh stack for Gecko SoCs and Modules. The Silicon Labs Bluetooth Mesh ADK embeds the same
stack and enable development of Bluetooth mesh applications for the iOS and Android systems.

The basic concept is that the native Bluetooth APIs of iOS and Android are used to discover and connect Bluetooth LE devices, while the
ADK is used to manage the Bluetooth mesh-specific operations such as Bluetooth mesh security, device and node management, network,
transport, and application layer operations.

 AN1200.1: iOS and Android ADK for Bluetooth® mesh SDK 2.x and Higher
 Installation

silabs.com | Building a more connected world. Rev. 1.2 | 2

2 Installation

2.1 Download

You have downloaded the ADK zip file from SiliconLabs/gecko_sdk GitHub site.

2.2 ADK Structure

The ADK zip contains:

./app/bluetooth/
android/ - Android ADK frameworks (debug and release)
android/dokka/ - Android ADK reference documentation
android_application/ - Android reference application (source code)
ios/ - iOS ADK Frameworks (debug and release)
ios/docs/ - iOS ADK reference documentation
ios_application/ - iOS reference application (source code)

Disclaimer: The mobile apps are a reference apps for the Bluetooth Mesh mobile ADK, but it should not be taken as a starting point for
customers to create their own mobile apps.

2.3 Set Up iOS Project

• Copy the BluetoothMesh.xcframework to a folder with the new iOS project (see section 2.2 ADK Structure for frameworks location).
• Open the main target in your project.
• Go to the General view.
• Add BluetoothMesh.xcframework to Frameworks, Libraries and Embedded Content.

https://github.com/SiliconLabs/gecko_sdk/releases/tag/v4.3.0

 AN1200.1: iOS and Android ADK for Bluetooth® mesh SDK 2.x and Higher
 Installation

silabs.com | Building a more connected world. Rev. 1.2 | 3

BluetoothMesh.xcframework should be visible in Frameworks, Libraries and Embedded Content section with “Embed & Sign” chosen.

 AN1200.1: iOS and Android ADK for Bluetooth® mesh SDK 2.x and Higher
 Installation

silabs.com | Building a more connected world. Rev. 1.2 | 4

Disable Bitcode in the project. BluetoothMesh.xcframework does not use Bitcode.
• Select the main target in the project.
• Go to the Build Settings view.
• Search for Bitcode.
• Set Enable Bitcode to ‘No’.

2.4 Set Up Android Project
1. Create a project in Android Studio.
2. Copy the *.aar file to <root path>/app/libs/ from the ADK package.
3. Add to dependencies {...} section of <root path>/app/build.gradle:

dependencies {
 ...
 implementation files('libs/ble_mesh-android_api-release.aar')
 implementation 'com.google.code.gson:gson:2.10.1'
}

4. Synchronize project after changes.
5. Initialize a BluetoothMesh object as shown in the following example.

import com.siliconlab.bluetoothmesh.adk.BluetoothMesh
import com.siliconlab.bluetoothmesh.adk.configuration.BluetoothMeshConfiguration

class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)

 BluetoothMesh.initialize(applicationContext, BluetoothMeshConfiguration())
 }
}

6. Compile and run the project.

 AN1200.1: iOS and Android ADK for Bluetooth® mesh SDK 2.x and Higher
 Usage: Basic Use Cases

silabs.com | Building a more connected world. Rev. 1.2 | 5

3 Usage: Basic Use Cases

The API is provided with support objects that help the user manage the Bluetooth mesh network. These are:
• Network – the main container in the mesh structure. Network is the owner of subnets and nodes.
• Subnet – a specific subnet belongs to a network.
• Node – a node can be added to many subnets. A node contains elements.
• Element – an addressable entity within a device containing models.
• Model – defines a set of States, State Transitions, State Bindings, Messages, and other associated behaviors.

Figure 3-1. Node Structure

Application developers are responsible for keeping track of any changes in the Bluetooth mesh structure. Objects are mutable and will
change over time.

Full API documentation and the reference applications’ source code are provided in the ADK package - see section 2.2 ADK
Structure for its location.

3.1 Provisioning a Device (Over GATT Bearer)

Bluetooth device discovery must be done on the application side. Devices that can be provisioned advertise themselves with the Unpro-
visioned Device beacon and Bluetooth Mesh Provisioning Service shall be present in the GATT database.

To provision a new node, the ADK expects that object implementing:

iOS: SBMConnectableDevice
Android: ConnectableDevice
Represents the device you want to provision, which can be connected to before provisioning.

and

iOS: SBMSubnet
Android: Subnet
Represents the target subnet to which to provision node.

are provided.

 AN1200.1: iOS and Android ADK for Bluetooth® mesh SDK 2.x and Higher
 Usage: Basic Use Cases

silabs.com | Building a more connected world. Rev. 1.2 | 6

The subnet can be created using:

iOS: SBMNetwork.createSubnet
Android: Network.createSubnet

To initiate the provisioning process, create

iOS: SBMProvisionerConnection
Android: ProvisionerConnection

Initiate the provisioning session using:

iOS: SBMProvisionerConnection.provision
Android: ProvisionerConnection.provision

3.2 Proxy Connection and Configuration

To configure provisioned nodes, the application must connect to subnet via proxy node.

The newly provisioned device will accept incoming proxy connection only for 60 seconds. If you intend to keep it as a proxy node you
have to confirm its proxy role in this time window. Once you have one or more proxy nodes in your subnet, you may connect to that
subnet and change settings of any node (including its proxy role) at any time.

To establish a proxy connection, initialize:

iOS: SBMProxyConnection
Android: ProxyConnection

object using:

iOS: SBMConnectableDevice
Android: ConnectableDevice

object, which represents a Bluetooth device advertising with a Bluetooth Mesh Proxy Service. This device will be used to send messages
to the network.

After initializing ProxyConnection object, function:

iOS: SBMProxyConnection.connect
Android: ProxyConnection.connectToProxy

must be invoked to establish the connection. There is an overloaded ProxyConnection.connectToProxy method in Android with an
additional boolean refreshBluetoothDevice argument, which supports deciding if BluetoothDevice should be refreshed before
connecting to the proxy node. This is needed to obtain current GATT services after they have been changed during the provisioning
process, because subsequent discoverServices method calls on the BluetoothGatt object can result in cached services from the
first call (even if device was disconnected). Refreshing BluetoothDevice before connecting to the proxy node is required only during
the first connection and configuration after provisioning.

After establishing the connection, class:

iOS: SBMConfigurationControl
Android: ConfigurationControl

can be used to set proxy service and get device composition data using:

iOS: SBMConfigurationControl.setProxy
Android: ConfigurationControl.setProxy

and

iOS: SBMConfiruationControl.getDeviceCompositionData
Android: ConfigurationControl. getDeviceCompositionData

 AN1200.1: iOS and Android ADK for Bluetooth® mesh SDK 2.x and Higher
 Usage: Basic Use Cases

silabs.com | Building a more connected world. Rev. 1.2 | 7

After getting raw Device Composition Data it should be passed to node using:

iOS: SBMNode.overrideDeviceCompositionData
Android: Node.overrideDeviceCompositionData

It will parse raw data into elements and models.

After establishing a connection with a proxy node, using the proxy server creates a filter list, which can be used to reduce the number of
packets exchanged with the proxy node. This can be done using:

iOS: SMBProxyControl.accept, SBMProxyControl.reject
Android: ProxyControl.accept, ProxyControl.reject

which adds addresses to or removes them from the proxy filter list, depending on the list type.

The filter list can be either an accept list or a reject list. An Accept list is a list of destination addresses of the packets which the Proxy
Server passes through to the Client. Other packets will not be received. Reject list is a list of destination addresses of the packets which
the Proxy Server will not pass through to the Client. All other packets will be received.

By default, the Proxy Server always initiates the filter as an empty accept list. The type of list can be changed using:

iOS: SBMProxyControl.setFilterType
Android: ProxyControl.setFilterType

Whenever the Proxy Client sends a message to the network, the source address is added to its accept list or removed from its reject list,
to let the Client receive a response. The following method can be used to get the current filter list type and number of entries in list on the
Proxy Server:

iOS: SBMProxyControl.getFilterStatus
Android: ProxyControl.getFilterStatus

3.3 Binding Models

Supported mesh models are listed in ModelIdentifier class.

To bind application key to a model within the node, the following steps should be done:
• An application key exists within the subnet to which the node belongs. An application key can be created using:

iOS: SBMSubnet.createAppKey
Android: Subnet.createAppKey

• An application key must be bound to node using:

iOS: SBMNodeControl.bind
Android: NodeControl.bind

• An application key must be bound to model using:

iOS: SBMFunctionalityBinder.bindModel
Android: FunctionalityBinder.bindModel

Models can be found within elements of the node. The property

iOS: SBMNode.elements
Android: Node.elements

contains elements of a node. Each element contains an array of sigModels and vendorModels.

For example, to send Generic OnOff get message to the node, first we need to find:

iOS: SBMSigModel
Android: SigModel

 AN1200.1: iOS and Android ADK for Bluetooth® mesh SDK 2.x and Higher
 Usage: Basic Use Cases

silabs.com | Building a more connected world. Rev. 1.2 | 8

in that Node’s sigModels array, where the modelIdentifier is equal to:

iOS: SBMModelIdentifier.genericOnOffServer
Android: ModelIdentifier.GenericOnOffServer

3.4 Sending the Message

To send the Generic message use:

iOS: SBMControlElement
Android: GenericClient

Initialize it with:

iOS: SBMElement and SBMApplicationKey

which contains the previously found GenericOnOffServer model.

To send get message use:

iOS: SBMControlElement.getStatus
Android: ControlElement.getStatus

Since we want to receive Generic OnOff status, the first argument needs to be:

iOS: SBMGenericOnOff.self.
Android: ModelIdentifier.GenericOnOffClient

The response will be received in the success callback on iOS side and related flow on Android side.

 AN1200.1: iOS and Android ADK for Bluetooth® mesh SDK 2.x and Higher
 Resources

silabs.com | Building a more connected world. Rev. 1.2 | 9

4 Resources

4.1 Silicon Labs Resources

• Silicon Labs: Bluetooth LE
• Silicon Labs: Bluetooth Mesh Android and iOS Mobile Applications

4.2 Bluetooth SIG Resources

• Bluetooth Mesh specifications
• Bluetooth Mesh glossary
• Bluetooth Mesh articles

4.3 iOS: Complying with Encryption Export Regulations

Every app submitted to TestFlight, or the App Store is uploaded to a server in the United States. It is a developer responsibility to make
sure that the uploaded app is fully legal and contains all necessary information. For that reason, each developer should become familiar
with Encryption Export Regulations. If the app uses, accesses, contains, implements, or incorporates encryption, this is considered an
export of encryption software, which means that the app is subject to U.S. export compliance requirements, as well as the import compli-
ance requirements of the countries where the app is distributed.

More detailed explanation can be found here: Encryption Export Regulations

The following authentication, encryption and hash algorithms are used by the Bluetooth Mesh ADK:
• AES, 256 bit
• AES CCM, 128 bit
• AES ECB, 128 bit
• Elliptic Curve Diffie-Hellman

4.4 Android: Known Bluetooth Issues

While developing applications using Bluetooth LE for Android devices many problems can occur. Unfortunately, troubleshooting is not as
straightforward as for the iOS. This section describes collected information how Bluetooth LE on Android works, common issues, and
advice on how to solve them. It can help you to develop your application faster.

Working with Bluetooth LE on Android is difficult, because:
• Device manufacturers make changes to the Android Bluetooth LE stack. Your application can work well on one device but could

have problems on another.
• Documentation on Bluetooth LE describes only basic concepts, but does not provide enough information about managing connec-

tions, need for queuing operations, or dealing with bugs.

4.4.1 Scanning

Scanning for Bluetooth LE devices is power consuming. Four scan modes are available:
• SCAN_MODE_BALANCED – good trade-off between scan frequency and power consumption
• SCAN_MODE_LOW_LATENCY – highest scanning frequency
• SCAN_MODE_LOW_POWER – default scan mode consuming the least power
• SCAN_MODE_OPPORTUNISTIC – application that is using this mode will get scan results if another application is scanning (it does

not start its own scanning)

Some applications may scan continuously, which would consume the phone’s battery power. In order to limit this Android has implemented
changes related to scanning. In Android 7.0 and newer versions there is protection against Bluetooth LE scanning abuse. If your app
starts and stops Bluetooth LE scans more than 5 times within 30 seconds, scan results will not be received temporarily. Moreover, starting
with Android 7.0, you can perform one scan with a maximum time of 30 minutes. After this time Android will change the scan mode to

https://www.silabs.com/developers/bluetooth-low-energy
https://www.silabs.com/developers/bluetooth-mesh-mobile-app
https://www.bluetooth.com/specifications/specs/?types=specs-docs&keyword=Mesh+adopted&filter=
https://www.bluetooth.com/learn-about-bluetooth/feature-enhancements/mesh/mesh-glossary/
https://www.bluetooth.com/?s=Mesh
https://developer.apple.com/documentation/security/complying_with_encryption_export_regulations

 AN1200.1: iOS and Android ADK for Bluetooth® mesh SDK 2.x and Higher
 Resources

silabs.com | Building a more connected world. Rev. 1.2 | 10

SCAN_MODE_OPPORTUNISTIC. As of Android 8.1, if you do not set any ScanFilters scanning will be paused when the user turns off
the screen, and will resume after the screen is turned on again.

Remember that the scanning process has to be stopped in your application. If you know the devices the user is looking for, stop the
process when all devices are found. If you do not know which devices the user is looking for, stop scanning after a fixed period. Also
consider stopping the scanning process if the user goes to another Activity or your application goes background.

4.4.2 Connecting

Some phones have problems with connecting during scanning, so it would be better to stop scanning if you do not need to find another
device. It is also recommended to wait about 500 milliseconds after stopping the scan before trying to connect to a device in order to
avoid GATT_ERROR.

Auto connect

When you get a proper BluetoothDevice object from ScanResult you can connect to it by calling one of connectGatt() method on Blue-
toothDevice. All versions of this method contain a parameter named autoConnect. Official documentation describes it only as “Boolean:
It determines whether to directly connect to the remote device (false) or to automatically connect as soon as the remote device becomes
available (true).”

When you connect to a device with autoConnect set to false (direct connect) Android will try to connect to the device with a 30 second
timeout. After that (if there was no other callback) you will receive an update with status GATT_ERROR (code 133). If there are pending
connection attempts with autoConnect set to true they will be suspended for this time. This direct connect attempt will not be executed
until another pending direct connect is finished. A direct connect attempt usually takes less time to succeed than an auto connect one.

Android waits until it sees this device and connects when it is available. Using auto connect allows you to have more than one pending
connection at the same time. These connections have no timeout, but they will be canceled when Bluetooth is turned off. If you are using
autoConnect set to true, you could be able to reconnect to the device as well. But the device must be in Bluetooth cache or be bonded
before. Remember that turning Bluetooth off, rebooting your phone or manually clearing cache in settings menu will clear device infor-
mation, so check the cache before attempting to reconnect.

4.4.3 Managing a Connection

Connection State

After trying to connect to a device with the connectGatt() method you should be informed about the result with the onConnection-
StateChange callback. It provides information about status and newState, which you will use to perform appropriate steps.Remember to
use the close() method on the BluetoothGatt object if the status is different than GATT_SUCCESS, or it is GATT_SUCCESS and the
state is equal to STATE_DISCONNECTED, which means that device was successfully disconnected. If you do not call close() the client
registered for this connection will not be removed. Once 30 clients are reached (usually 5 are used by default after rebooting the phone)
the user will not be able to connect to another device (until they clear the cache).

Changing MTU

Maximum Transmission Unit (MTU) determines the maximum length of the data packet sent between phone and Bluetooth LE device.
You can request changing MTU size after successfully connecting with the device, before exchanging data with it. The default value of
MTU is 23 (GATT_DEF_BLE_MTU_SIZE), but usually 3 bytes contain ATT headers, so only 20 bytes can be sent. Change MTU by
calling requestMtu(size) on the BluetoothGatt object, where size parameter is the new MTU length. Remember that the maximum avail-
able value is 517 (GATT_MAX_MTU_SIZE). If calling requestMtu(size) returns true, wait for the onMtuChanged callback with the result.

Discovering Services

Remember also that many Bluetooth LE operations are asynchronous, and you need to wait for a callback to perform next operation. For
example, after getting onConnectionStateChange with status GATT_SUCCESS and newState STATE_CONNECTED you need to call
discoverServices(). It returns true if service discovery started and you must wait for the onServicesDiscovered callback containing the
status of this process. If you receive GATT_SUCCESS you can, for example, read/write characteristics, but if the result was not successful
you need to disconnect from the device, because without services discovered you cannot perform those operations.

Reading/Writing Characteristics

These operations are also asynchronous, and you can perform only one operation at a time. To solve this, use a queue for your operations.
Add the next operation to it and, when the first is completed, it is removed from queue and the next command is executed.

 AN1200.1: iOS and Android ADK for Bluetooth® mesh SDK 2.x and Higher
 Resources

silabs.com | Building a more connected world. Rev. 1.2 | 11

When writing data to a characteristic you can specify the write type. There are two available types: WRITE_TYPE_DEFAULT and
WRITE_TYPE_NO_RESPONSE. Bluetooth Mesh supports only WRITE_TYPE_NO_RESPONSE.

Disconnecting

In Android you might have problems with performing some operations, as reconnecting, after improperly disconnecting from a device.
There is a timeout while the phone continues opening connection events and the device is not fully disconnected, so you could have
trouble connecting to it again. In Android this timeout was hardcoded to 20 seconds and has been changed to 5 seconds in Android 10,
so it can take a lot of time until you are notified about the closed connection. In iOS this usually takes less than 1 second. If you want to
reconnect immediately after disconnecting you could get status code 22, so it would be better to wait about 500 milliseconds before the
connection attempt.

4.4.4 Errors

Many errors can be received on some callback when working with a Bluetooth LE device. Unfortunately, not all of them have descriptions
to help you to determine the problem. A common error is status 133 named GATT_ERROR. Unfortunately, no information about it is in
BluetoothGatt class documentation. If you got this error, the problem could be one of the following:
• You try to connect with autoConnect set to false and receive the error after the 30 second timeout.
• After disconnecting from the device you do not invoke close() so you get the error when next trying to connect.
• The Bluetooth cache contains some invalid data, so restart your phone.
• You use a device that has problems with Bluetooth LE. Some models, for example older Huawei phones, are known to have low

Bluetooth LE quality. Try using another phone.
• There was a problem on the Bluetooth side. After calling close() and waiting a little time, try connecting again.

 AN1200.1: iOS and Android ADK for Bluetooth® mesh SDK 2.x and Higher
 Open-Source Licenses Used

silabs.com | Building a more connected world. Rev. 1.2 | 12

5 Open-Source Licenses Used

Table 5-1. Open-Source Licenses Used

Feature License Comment

Mbed TLS Apache License 2.0 Used for AES and ECDH and other cryptographic algorithms.

GSON (Android only) Apache License 2.0 Used to store and load the Bluetooth mesh and device database to the Android
secure storage.

https://github.com/ARMmbed/mbedtls/blob/development/LICENSE
https://github.com/google/gson/blob/master/LICENSE

IoT Portfolio
www.silabs.com/products

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Smart. Connected.
Energy-Friendly.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1 Introduction
	2 Installation
	2.1 Download
	2.2 ADK Structure
	2.3 Set Up iOS Project
	2.4 Set Up Android Project

	3 Usage: Basic Use Cases
	3.1 Provisioning a Device (Over GATT Bearer)
	3.2 Proxy Connection and Configuration
	3.3 Binding Models
	3.4 Sending the Message

	4 Resources
	4.1 Silicon Labs Resources
	4.2 Bluetooth SIG Resources
	4.3 iOS: Complying with Encryption Export Regulations
	4.4 Android: Known Bluetooth Issues
	4.4.1 Scanning
	4.4.2 Connecting
	4.4.3 Managing a Connection
	4.4.4 Errors

	5 Open-Source Licenses Used

