
AN1220: DALI Communication Using the
EFR32

This application note uses Series 1 and Series 2 devices to im-
plement the Digital Addressable Lighting Interface (DALI) proto-
col. DALI uses a wired bus structure to create a communication
path between a control device (main) and a control gear (secon-
dary).
This application note describes how to implement DALI timing, packet formats, and
Manchester encoding/decoding with minimum overhead on the Series 1 and Series 2
core.

For DALI example projects, see: https://github.com/SiliconLabs/platform_applications/
tree/master/platform_dali

KEY POINTS

• Supports DALI main and secondary.
• Bit-banged and hardware implementation.
• Manchester encoding and decoding.
• Option to use DMADRV.
• Software examples.

silabs.com | Building a more connected world. Copyright © 2023 by Silicon Laboratories Rev. 0.2

https://github.com/SiliconLabs/platform_applications/tree/master/platform_dali
https://github.com/SiliconLabs/platform_applications/tree/master/platform_dali

1. Device Compatibility

This application note supports multiple device families, and some functionality is different depending on the device.

MCU Series 1 consists of:
• EFM32JG1/EFM32JG12
• EFM32PG1/EFM32PG12
• EFM32GG11/EFM32GG12
• EFM32TG11

Wireless SoC Series 1 consists of:
• EFR32BG1/EFR32BG12/EFR32BG13
• EFR32FG1/EFR32FG12/EFR32FG13/EFR32FG14
• EFR32MG1/EFR32MG12/EFR32MG13/EFR32MG14

MCU Series 2 consists of:
• EFM32PG22
• EFM32PG23
• EFM32PG28

Wireless SoC Series 2 consists of:
• EFR32BG21/EFR32MG21
• EFR32BG22/EFR32FG22/EFR32MG22
• EFR32FG23/EFR32SG23/EFR32ZG23
• EFR32BG24/EFR32MG24
• EFR32FG25
• EFR32BG27/EFR32MG27
• EFR32FG28/EFR32SG28/EFR32ZG28

AN1220: DALI Communication Using the EFR32
Device Compatibility

silabs.com | Building a more connected world. Rev. 0.2 | 2

2. DALI Overview

2.1 Terminology

The following terms are generally used in a DALI system:
• Control Device (Main): Controller or Transmitter
• Control Gear (Secondary): Ballast or Receiver
• Forward Frame: Packet sent from the main to the secondary
• Backward Frame: Response packet sent from the secondary to the main
• Address:

• Short Address: Up to 64 secondaries can be connected to the same network and each secondary has an individual short ad-
dress

• Group Address: Up to 16 groups can exist and a secondary unit can belong to several groups
• Broadcast: Address used to address all secondaries

2.2 Introduction

DALI is an international standard (IEC 62386) lighting control system that provides a single interface for electronic control devices
(mains) and gears (secondaries). Up to 64 different secondaries (e.g., ballasts) can be controlled within the same system.

The DALI bus consists of two wires, providing a differential signal. Data is transmitted in frames. There are two different frame types: a
“forward” frame (sent by the main to the secondaries), and a “backward” frame (sent by a secondary to the main).

The following sections briefly describe the basic principles of the DALI system. More information about the DALI standard can be found
at http://www.dali-ag.org.

2.3 Frame Structure

Major characteristics of the DALI frame structure are:
• Standard asynchronous serial protocol
• Communication speed fixed at 1200 baud ± 10%, half-duplex
• Manchester encoding used for better resynchronisation
• Most significant bit (MSB) sent out first
• Bus is in idle (high) state between frames
• Main unit controls the communication
• Main unit sends 1 start bit, 16-bit data, and 2 stop bits
• Secondary unit sends 1 start bit, 8-bit data, and 2 stop bits

AN1220: DALI Communication Using the EFR32
DALI Overview

silabs.com | Building a more connected world. Rev. 0.2 | 3

http://www.dali-ag.org

2.3.1 Manchester Encoding

DALI uses Manchester (also called bi-phase) encoding to send the start bit and data bits, meaning the data is transmitted using the
edges of the signal. A falling edge indicates a '0', and a rising edge indicates a '1' as shown in Figure 2.1 DALI Manchester Encoding on
page 4. TE is the half-bit time, and this is where the signal changes phase. The defined bit rate of DALI is 1200 bps, so one bit
period (2TE) is about 833 µs.

Logic 0

2TE

Logic 1

2TE
2TE ~= 833 µs ± 10%

Figure 2.1. DALI Manchester Encoding

2.3.2 Forward Frame

A forward frame is the packet sent by the control device (main) to the control gear (secondary). It consists of a Manchester encoded
start bit (logical '1'), one address byte, and one command byte. The frame is terminated by two stop bits (idle). The stop bits (4TE) do
not contain any change of phase.

IDLE IDLE

START STOP STOP
1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0

ADDRESS BYTE COMMAND BYTE

MSB LSB MSB LSB

Figure 2.2. DALI Forward Frame

2.3.3 Backward Frame

A backward frame is the response packet sent by the control gear (secondary) back to the control device (main). It consists of a Man-
chester encoded start bit (logical '1') and one response byte. The frame is terminated by two stop bits (idle). The stop bits (4TE) do not
contain any change of phase.

IDLE IDLE

START STOPSTOP
1 0 1 1 0 0 1 0 0

RESPONSE BYTE

MSB LSB

Figure 2.3. DALI Backward Frame

AN1220: DALI Communication Using the EFR32
DALI Overview

silabs.com | Building a more connected world. Rev. 0.2 | 4

2.4 Timing

As described in 2.3.1 Manchester Encoding, TE is used to indicate a half-bit time, which is about 417 µs. The timing requirements
based on TE for transmission are listed below as shown in Figure 2.4 DALI Frame Timing on page 5:
• A forward frame takes 38TE (15.83 ms).
• A backward frame takes 22TE (9.17 ms).
• The settling time between two consecutive forward frames is at least 22TE (9.17 ms).
• Four forward frames with accompanying periods of 22TE shall fit exactly in 100 ms.
• The settling time between a forward and backward frame (transition from forward to backward) is 7TE (2.92 ms) to 22TE (9.17 ms).
• After sending the forward frame, the main unit will wait for 22TE (9.17 ms). If no backward frame has been started within 22TE, this

is interpreted as “no answer” from the secondary.
• The settling time between a backward and forward frame (transition from backward to forward) is at least 22TE (9.17 ms).

Forward Frame

Forward Frame

Forward Frame Forward Frame

Forward FrameBackward Frame

38TE >= 22TE >= 22TE

>= 22TE>= 7TE
<= 22TE 22TE38TE

Figure 2.4. DALI Frame Timing

2.5 Physical Layer

In order to achieve better noise immunity from interference associated with nearby power installation cables, the physical DALI bus
does not use TTL voltage levels. In a typical system, the low voltage is 0 V and the high voltage is 16 V. The maximum and minimum
bus voltages at both the transmitting unit and the receiving unit are defined as follows:
• Low level state

• -4.5 to 4.5 V (transmitter)
• -6.5 to 6.5 V (receiver)

• High level state
• 11.5 to 20.5 V (transmitter)
• 9.5 to 22.5 V (receiver)

AN1220: DALI Communication Using the EFR32
DALI Overview

silabs.com | Building a more connected world. Rev. 0.2 | 5

3. Hardware Description

This section describes the hardware digital logic used for DALI communication. Implementation of the analog interface that complies
with the electrical specifications discussed in 2.5 Physical Layer is outside the scope of this application note.

3.1 Hardware Resources

Depending on the functionality available, DALI can be implemented either with bit-banging and assistance from the USART/EUSART
module or with full hardware support using the EUSART module.

The hardware resources used for DALI transmission in the bit-banged examples can be found below:

Table 3.1. Hardware Resources for Bit-Banged DALI Transmission

Resource Quantity Usage

USARTn 1 USARTn_TX pin is configured as SPI MOSI to transmit DALI frame

PRS channel 1 USARTn_TXC is used as signal producer

DMA channel 1 Transfers data from memory buffer to USARTn_TXDATA register

Data Flash 512 bytes Lookup table for Manchester encoding

The hardware resources used for DALI reception in the bit-banged examples can be found below:

Table 3.2. Hardware Resources for Bit-Banged DALI Reception

Resource Quantity Usage

GPIO 1 GPIO is configured as input to receive DALI frame

TIMERn CC0 2 1. Provides timing to sample the GPIO for reception
2. Provides timing for the timeout and settling time between DALI frames

PRS channel 2 1. GPIO for reception (rising and falling edges) is used as signal producer
2. Sampling TIMER overflow is used as signal producer

DMA channel 2 1. Updates the TIMERn_TOP and TIMERn_TOPB registers of two TIMERs
2. Transfers data from GPIO_Px_DIN register to memory buffer

Data Flash 256 bytes Lookup table for Manchester decoding

The hardware resources used for DALI transmission and reception in the hardware-supported examples can be found below:

Table 3.3. Hardware Resources for Hardware-Supported DALI Transmission and Reception

Resource Quantity Usage

EUSARTn 1 1. EUSARTn_TX is configured as UART TX to transmit DALI frame
2. EUSARTn_RX is configured as UART RX to receive DALI frame

DMA channel 2 1. Transfers data from memory to EUSARTn_TXDATA
2. Transfers data from EUARTn_RXDATA to memory

SYSRTC 1 Provides timing for the timeout and settling time between DALI frames by using the
sleeptimer service component

GPIO 1 Detects start bit on RX pin

AN1220: DALI Communication Using the EFR32
Hardware Description

silabs.com | Building a more connected world. Rev. 0.2 | 6

4. Software Description

4.1 EFR32MG12 and EFR32xG21 Software Examples

4.1.1 Build Options

The user application must provide a header file named dali_config.h to configure the hardware for DALI communication. An example
of the EFR32MG12's hardware configuration is shown in the table below.

Table 4.1. Hardware Configuration for EFR32MG12

Define Parameter Description

IDLE_LEVEL1 1 DALI idle level is LOW if 0 and HIGH if 1

DALI_TIMER_NUM 0 TIMERn (n = 0) for DALI_TIMER to sample the GPIO for reception

TO_TIMER_NUM 1 TIMERn (n = 1) for TO_TIMER to set up timeout and settling time between DALI
frames

SPI_USART_NUM 3 USARTn (n = 3) for SPI_USART to transmit DALI frame

PIN_PRS_CH 0 PRS channel for DALI_RX_PIN

TX_PRS_CH 1 PRS channel for end of SPI_USART transmission

TIMER_PRS_CH 2 PRS channel for DALI_TIMER overflow

DMA_CH_SPI_TX2 0 DMA channel for SPI_USART transmission

DMA_CH_RX_PIN2 1 DMA channel to update registers of DALI_TIMER and TO_TIMER

DMA_CH_RX_TMR2 2 DMA channel to capture DALI_RX_PIN

SPI_MOSI_PIN 11 GPIO pin for SPI_USART MOSI

SPI_MOSI_PORT gpioPortD GPIO port for SPI_USART MOSI

SPI_TX_LOC3 USART_ROUTELOC0_

TXLOC_LOC3

SPI_USART TX location of selected GPIO

DALI_RX_PIN 12 GPIO pin to receive DALI frame

DALI_RX_PORT gpioPortD GPIO port to receive DALI frame

DMAREQ_NUM 0 DMA request 0 or 1 from the TIMER_PRS_CH

DALI_HALF_T 79994 Timing for ½TE on Manchester encoding

RX_EDGE_TO 50005 Timeout (5TE) for no edge toggles on DALI_RX_PIN

RX_BWARD_TO 220005 Receive backward frame timeout (22TE) for DALI main

TX_BWARD_WAIT 70005 Settling time (7TE) between forward and backward frames for DALI secondary

Note:
1. The IDLE_LEVEL should set to 0 when the signal from the DALI bus is inverted by the isolator (e.g., opto-coupler).
2. If the DALI_USE_DMADRV compile time option is set, the DMA channels will be allocated by the DMADRV.
3. This define is only for Series 1 MCUs.
4. This value is based on a 38.4 MHz HFXO and a TIMER prescaling factor 1. One TE is equal to 38400000/2400 = 16000
5. These values are based on a 38.4 MHz HFXO and a TIMER prescaling factor 16. One TE is equal to 38400000/(16 x 2400) =

1000

By default, the EFR32MG12 example project is built as a DALI main. The project can be built as a DALI secondary by defining the
DALI_SECONDARY symbol in the project settings or the dali_config.h file. DMADRV can be intergrated to the project by defining the

AN1220: DALI Communication Using the EFR32
Software Description

silabs.com | Building a more connected world. Rev. 0.2 | 7

DALI_USE_DMADRV symbol in the project settings or the dali_config.h file. Figure 4.1 DALI_SECONDARY and DALI_USE_DMADRV
Symbols in Simplicity Studio IDE on page 8 shows how to define these symbols in the Simplicity Studio IDE project settings.

Figure 4.1. DALI_SECONDARY and DALI_USE_DMADRV Symbols in Simplicity Studio IDE

4.1.2 PRS Producers and Consumers

The PRS producers and consumers used in the example code are shown in the table below.

Table 4.2. PRS Producers and Consumers

PRS Channel Producer Signal Consumer

TX_PRS_CH SPI_USART TXC (Transmission has completed) • DMA_CH_RX_PIN SYNCTRIG1 (DALI main)
• DMA_CH_SPI_TX SYNCTRIG1 (DALI secondary)

PIN_PRS_CH DALI_RX_PIN PIN (Rising and falling edges) • DMA_CH_RX_PIN SYNCTRIG1

• DALI_TIMER reload and start
• TO_TIMER reload and start

TIMER_PRS_CH DALI_TIMER OF (Overflow) DMAREQ_NUM (DMAREQ0 or 1)

Note:
1. For more information on using SYNCTRIG with PRS, see the AN1029: Linked Direct Memory Access (LDMA) Controller

AN1220: DALI Communication Using the EFR32
Software Description

silabs.com | Building a more connected world. Rev. 0.2 | 8

https://www.silabs.com/documents/public/application-notes/AN1029-efm32-ldma.pdf

4.1.3 DALI Frame Transmission

On devices without DALI hardware support, it is traditional to use bit-banging for frame transmission at a hardware timer rate corre-
sponding to the 417 µs TE interval. A '1' is sent by driving the transmit line low for one TE, followed by driving the line high for another
TE (see Figure 2.1 DALI Manchester Encoding on page 4). A ‘0’ is sent by driving the transmit line high for one TE, followed by driving
the line low for another TE. In both cases, sending a single Manchester-encoded bit requires two interrupts.

To eliminate the periodic 417 μs timer interrupt overhead, the USART is configured for SPI mode to encode the DALI frame in the ex-
ample code. The SPI runs at twice the bit frequency (2 x 1200 = 2400 Hz), so the phase is changed in the middle of every single bit.

2 or 26 idle level padding bits are inserted at the beginning of the SPI data so the number of data bits is a multiple of 8 (24 bits for a
backward frame and 64 bits for a forward frame). The additonal 24 padding bits on forward frames are used to meet the settling time of
at least 22TE between two consecutive forward frames and the settling time for transition from a backward frame to a forward frame
(see Figure 2.4 DALI Frame Timing on page 5).

The startDaliTxDma() function in dali_tx.c encodes the forward or backward frame in Manchester format so the DMA can move the
frame to the selected hardware serial port (SPI_USART) for transmission. Figure 4.2 SPI for Manchester Encoding on Backward Frame
on page 9 shows how the DALI backward frame (0x64) is encoded into three bytes (0xD9, 0x69, and 0xAF) for SPI_USART transfer.

To minimize DMA servicing delays between bytes, assign the DMA_CH_SPI_TX DMA channel the highest priority that can be managed to
minimize latency if there is the possibility that multiple DMA channels can contend for arbitration in the application code.

IDLE IDLESTART STOP STOP

BACKWARD FRAME (0x64)

1

SPI data through DMA 0xD9 0x69 0xAF

Padding bits
1 1 10 0 0 01 1 1 1 1 10 0 0 0 01 1 1 1 1

0 0 0 0 01 1 11SPI_MOSI_PIN

SPI_CLK_PIN

Figure 4.2. SPI for Manchester Encoding on Backward Frame

Note: The SPI_CLK_PIN signal is shown in Figure 4.2 SPI for Manchester Encoding on Backward Frame on page 9 to show how the
SPI is used to manage edge transitions in the transmitted data. This pin is not required for the DALI physical interface, and the associ-
ated GPIO pin is available to the firmware for other purposes.

AN1220: DALI Communication Using the EFR32
Software Description

silabs.com | Building a more connected world. Rev. 0.2 | 9

4.1.4 DALI Frame Reception

The traditional way to receive a DALI message is to detect the edges of the RX signal and measure the time between these edges. This
can be done by using a TIMER input capture on Series 1 and Series 2 devices because the input capture can generate interrupts on
both rising and falling edges. At a falling edge, the pulse high time is captured and stored. At a rising edge, the pulse low time is cap-
tured, and the received bit(s) are decoded.

To eliminate the TIMER input capture interrupt overhead, the TIMER, PRS, and DMA are used to receive DALI frames in the example
code. Figure 4.3 PRS for Manchester Decoding on Wireless SoC Series 1 on page 10 shows how the bit stream 01
1001011010011010 1111 is detected for the Manchester-encoded backward frame (0x64).

½TE

1 1

1TE

2

3

6

STOP STOPIDLE IDLE

7

1

0

BACKWARD FRAME (0x64)

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1

54

DALI_RX_PIN

PIN_PRS_CH

TIMER_PRS_CH

START

Figure 4.3. PRS for Manchester Decoding on Wireless SoC Series 1

1. The PRS, TIMER, and DMA are initialized at the end of the forward frame transmission (DALI main) or the idle state (DALI secon-
dary)
• For the selected DALI_TIMER, sets the TOP register to ½TE and the TOPB register to 1TE
• For the selected TO_TIMER, sets the TOP register to the timeout interval
• Sets the DALI_TIMER and TO_TIMER to reload and start when the PRS channel PIN_PRS_CH outputs a pulse
• Enables the DMA channels DMA_CH_RX_PIN and DMA_CH_RX_TMR
• Waits for a pulse from PIN_PRS_CH to trigger DMA_CH_RX_PIN

2. The PIN_PRS_CH pulses are generated by the falling and rising edges on the DALI_RX_PIN
• The DALI_TIMER is started, and the TOP register is reloaded with ½TE
• The TO_TIMER is started, and the TOP register is reloaded with the timeout interval
• The DMA_CH_RX_PIN writes ½TE to the TOP register and 1TE to the TOPB register of DALI_TIMER for the next PRS trigger
• The DMA_CH_RX_PIN writes RX_EDGE_TO to the TOP register of TO_TIMER
• Waits for the next PIN_PRS_CH pulse to repeat the above processes

3. The TIMER_PRS_CH pulses are generated by DALI_TIMER overflows
• The DMA_CH_RX_TMR captures the logic level (0 or 1) on the DALI_RX_PIN and stores the value to a memory buffer
• The TOP register of DALI_TIMER is updated by the TOPB register (1TE) for the next capture

4. The DALI_RX_PIN capture timing is ½TE when an edge toggles on DALI_RX_PIN
5. The DALI_RX_PIN capture timing is 1TE if no edge toggles on DALI_RX_PIN
6. The DALI_RX_PIN capture is always in the middle of every bit, this can eliminate the error due to drifting
7. The LDMA interrupt is triggered after capturing 22 bits (backward frame) or 38 bits (forward frame) from the DMA_CH_RX_TMR loop

transfer
• Stops DMA_CH_RX_PIN
• Sets PIN_PRS_CH producer to none
• Stops DALI_TIMER and TO_TIMER
• The received bit stream is ready to be decoded by the decodeDaliRx() function in dali_rx.c

AN1220: DALI Communication Using the EFR32
Software Description

silabs.com | Building a more connected world. Rev. 0.2 | 10

4.1.5 API

The APIs available to the user application are described in the table below. These functions can be found in the dali_tx.c and
dali_rx.c source files.

Table 4.3. API for DALI Communication

Function Parameter Return Usage

void initDali(void) — — Initialize USART, DMA, PRS, TIMER for DALI
communication

void

startDaliTxDma(uint8

_t addr, uint8_t

data)

• Forward frame — Address
and data

• Backward frame — Data
only

— • DALI main — Initialize forward frame trans-
mission and backward frame reception

• DALI secondary — Initialize backward frame
transmission

void

startDaliRxDma(void)

— — • DALI main — Not applicable
• DALI secondary — Initialize forward frame

reception

bool

decodeDaliRx(uint8_t

*addr, uint8_t

*data)

• Forward frame — Pointers
of address and data

• Backward frame — Pointer
of data only

• True if succeed
• False if framing error

• DALI main — Decode received bit stream in-
to address and data

• DALI secondary — Decode received bit
stream into data

DaliStatus_t

getDaliStatus(void)

— DALI status Get current DALI status

void

setDaliStatus(

DaliStatus_t status)

DALI status to be set — Set DALI status

AN1220: DALI Communication Using the EFR32
Software Description

silabs.com | Building a more connected world. Rev. 0.2 | 11

4.1.6 Events and Interrupts

4.1.6.1 DALI Main

Figure 4.4 DALI Main Transmission and Reception on page 12 shows the transmission of a forward frame followed by reception of a
backward frame on a device operating as the main. Each number in the figure corresponds to an event in the firmware and associated
hardware activity or interrupt code that occurs in response to each of these events. The correspondence between these events, associ-
ated interrupts, and software actions is shown in Table 4.4 DALI Main Events and Interrupts on page 12.

Forward Frame Backward Frame
>= 7TE

<= 22TE 22TE38TE

1 2 3 4

Figure 4.4. DALI Main Transmission and Reception

Table 4.4. DALI Main Events and Interrupts

Event Interrupt Action

1 — End of forward frame transmission — The backward frame reception (DMA_CH_RX_PIN SYNCTRIG) is trig-
gered by TX_PRS_CH pulse (SPI_USART TXC)

2 — Backward frame timeout TO_TIMER Inform user application no backward frame has been started after
22TE (RX_BWARD_TO)

3 — Data reception timeout TO_TIMER Inform user application no edge toggles in 5TE (RX_EDGE_TO) after
receiving start bit

4 — End of backward frame reception DMA_CH_RX_TMR The backward frame bit stream is ready for decode in user applica-
tion

AN1220: DALI Communication Using the EFR32
Software Description

silabs.com | Building a more connected world. Rev. 0.2 | 12

4.1.6.2 DALI Secondary

Figure 4.5 DALI Secondary Reception and Transmission on page 13 shows the transmission of a forward frame followed by reception
of a backward frame on a device operating as the secondary. Each number in the figure corresponds to an event in the firmware and
associated hardware activity or interrupt code that occurs in response to each of these events. The correspondence between these
events, associated interrupts, and software actions is shown in Table 4.5 DALI Secondary Events and Interrupts on page 13.

Forward Frame Backward Frame
>= 7TE

<= 22TE 22TE38TE

1 2 3 4

Figure 4.5. DALI Secondary Reception and Transmission

Table 4.5. DALI Secondary Events and Interrupts

Event Interrupt Action

1 — Data reception timeout TO_TIMER Inform user application no edge toggles in 5TE (RX_EDGE_TO) after
receiving start bit

2 — End of forward frame reception DMA_CH_RX_TMR Start the TO_TIMER for settling time 7TE (TX_BWARD_WAIT) between
forward and backward frame and the forward frame bit stream is
ready for decode in user application.

3 — Settling time has expired TO_TIMER Start the backward frame transmission in user application

4 — End of backward frame transmission DMA_CH_SPI_TX Wake up core from Energy Mode 1 (EM1) if necessary

4.1.6.3 Comparison

A comparison between the traditional bit-bang method and the hardware-assisted bit-bang method used in this application note is
shown below.

Table 4.6. Traditional Bit-Bang Method Versus Hardware-Assisted Bit-Bang Method

Traditional Method Hardware-Assisted

Advantages • Straightforward GPIO implementation for both
transmission and reception

• Requires a single hardware timer in addition to the
RX and TX GPIO pins

• Only one interrupt from DMA during DALI main
transmission and reception

• Three interrupts from DMA and TIMER during DALI
secondary reception and transmission

• Hardware-assistance reduces energy use by allow-
ing the CPU to stay in EM1 energy mode

• Minimized overhead within interrupt service rou-
tines

• Efficient Manchester encoding and decoding with
software look-up tables

Disadvantages • Regular periodic interrupts can interfere with wire-
less stack operation

• Manchester encoding and decoding introduces
overhead within interrupt service routines

• Hardware assistance requires the firmware devel-
oper to understand the complex interaction be-
tween peripherals

• Some applications may not be able to forgo the ex-
tra hardware resources (USART, PRS, DMA, extra
TIMER) used to offload the CPU

AN1220: DALI Communication Using the EFR32
Software Description

silabs.com | Building a more connected world. Rev. 0.2 | 13

4.2 EFR32xG24 Software Example

The EFR32xG24 software example uses the EUSART peripheral to send and receive DALI frames. Manchester encoding and decoding
is handled by the peripheral, so no software encoding or decoding is needed. The sleeptimer service component and GPIO interrupts
are used to manage the timeouts between the forward and backward frames.

4.2.1 Build Options

The user application must provide a header file named dali_config.h to configure the hardware for DALI communication. An example
of EFR32xG24 hardware configuration is shown in the table below.

Table 4.7. Hardware Configuration for EFR32xG24

Define Parameter Description

IDLE_LEVEL1 1 DALI idle level is LOW if 0 and HIGH if 1

DALI_TX_PIN 1 GPIO pin to transmit DALI frame (EUSART TX)

DALI_TX_PORT gpioPortC GPIO port to transmit DALI frame (EUSART TX)

DALI_RX_PIN 2 GPIO pin to receive DALI frame (EUSART RX)

DALI_RX_PIN gpioPortC GPIO port to receive DALI frame (EUSART RX)

Note:
1. The IDLE_LEVEL should set to 0 when the signal from the DALI bus is inverted by the isolator (e.g., opto-coupler).

By default, the EFR32xG24 example project is built as a DALI main. The project can be built as a DALI secondary by defining the
DALI_SECONDARY symbol in the project settings or the dali_config.h file.

AN1220: DALI Communication Using the EFR32
Software Description

silabs.com | Building a more connected world. Rev. 0.2 | 14

4.2.2 Events and Interrupts

4.2.2.1 DALI Main

Figure 4.6 DALI Main Transmission and Reception on page 15 shows the transmission of a forward frame followed by reception of a
backward frame on a device operating as the main. Each number in the figure corresponds to an event in the firmware and associated
hardware activity or interrupt code that occurs in response to each of these events. The correspondence between these events, associ-
ated interrupts, and software actions is shown in Table 4.8 DALI Main Event and Interrupt on page 15.

Forward Frame Backward Frame
>= 7TE

<= 22TE 22TE38TE

1 2 3

Figure 4.6. DALI Main Transmission and Reception

Table 4.8. DALI Main Event and Interrupt

Event Interrupt Action

1 — End of forward frame transmission EUSART TXC The timers are started at the end of the forward frame transmission

2 — Backward frame timeout Sleeptimer

callbacks and
GPIO

1. Timer callback informs the user application that backward re-
ception is ready after 7TE

2. Timer callback informs user application no backward frame has
been started after 22TE

3. GPIO callback informs the user application that the start bit was
detected between 7TE and 22TE

3 — End of backward frame reception DMA RX

callback

Inform the user application the backward frame was recieved

AN1220: DALI Communication Using the EFR32
Software Description

silabs.com | Building a more connected world. Rev. 0.2 | 15

4.2.2.2 DALI Secondary

Figure 4.7 DALI Secondary Reception and Transmission on page 16 shows the transmission of a forward frame followed by reception
of a backward frame on a device operating as the secondary. Each number in the figure corresponds to an event in the firmware and
associated hardware activity or interrupt code that occurs in response to each of these events. The correspondence between these
events, associated interrupts, and software actions is shown in Table 4.9 DALI Secondary Event and Interrupt on page 16.

Forward Frame Backward Frame
>= 7TE

<= 22TE 22TE38TE

1 2 3

Figure 4.7. DALI Secondary Reception and Transmission

Table 4.9. DALI Secondary Event and Interrupt

Event Interrupt Action

1 — End of forward frame reception DMA RX

callback

Inform the user application the forward frame was received

2 — Settling time has expired Sleeptimer

callback

Start the backward frame transmission in user application

3 — End of backward frame transmission EUSART TXC Inform the user application the backward frame was transmitted

AN1220: DALI Communication Using the EFR32
Software Description

silabs.com | Building a more connected world. Rev. 0.2 | 16

5. Testing

The DALI examples can be found in the Silicon Labs Platform Applications Example repository on Github - https://github.com/Silicon-
Labs/platform_applications/tree/master.

By default, the DALI main example projects are:
• BRD4161A_EFR32MG12P_dali.sls

• BRD4161A_EFR32MG12P_dali_dmadrv.sls

• BRD4186C_EFR32xG24_dali_dmadrv.sls

By default, the DALI secondary example projects are:
• BRD4181A_EFR32xG21_dali.sls

• BRD4181A_EFR32xG21_dali_dmadrv.sls

Any of the main example projects can be built as a secondary by adding the DALI_SECONDARY=1 build option. Any of the secondary
example projects can be built as a main by removing the DALI_SECONDARY=1 build option.

Import any two of these projects into the Simplicity Studio IDE, build the projects, and program the hex file to the respective radio
boards.

5.1 Test Setup

Below are the required connections between the main and secondary devices:
• Main's DALI TX pin to secondary's DALI RX pin
• Main's DALI RX pin to secondary's DALI TX pin
• Main's GND pin to secondarys GND pin

Figure 5.1 DALI Communication Connection Diagram on page 17 shows the connections between two Wireless Starter Kits (WTKs),
in which the main is using the BRD4161A radio board and the secondary is using the BRD4181A radio board.

EFR32MG12 WSTK
(BRD4161A)

Input_Pin

DALI TX - PD11
(EXP Header Pin 9)

DALI RX – PD12
(EXP Header Pin 11)

EFR32xG21 WSTK
(BRD4181A)

GND
(EXP Header Pin 1)

DALI TX - PC0
(EXP Header Pin 4)

DALI RX - PC1
(EXP Header Pin 6)

GND
(EXP Header Pin 1)

DALI Main DALI Secondary

Figure 5.1. DALI Communication Connection Diagram

AN1220: DALI Communication Using the EFR32
Testing

silabs.com | Building a more connected world. Rev. 0.2 | 17

https://github.com/SiliconLabs/platform_applications/tree/master
https://github.com/SiliconLabs/platform_applications/tree/master

5.2 Example User Interface

The board controller on the WSTK provides a virtual COM port (CDC) interface when connected to a computer. This allows a host PC
running a terminal program (e.g., Tera Term) to communicate with the device running the example code with the provided user inter-
face. The virtual COM port should be set to 115200 8N1.

Figure 5.2. User Interface of DALI Main and Secondary

5.3 Test Procedure

Follow the test procedures below to run the DALI communication example.
• Type 1 in the secondary's user interface to wait for a forward frame from DALI main
• Type 1 in the main's user interface to send a forward frame (address 255 and data 144) to the secondary and to wait for a backward

frame from the secondary
• The secondary will display the forward and backward frames on the user interface and send the backward frame (data 100) to the

main
• The secondary will display an error message onto the user interface in the case of a communication failure
• The main will display the forward and backward frames or error message on the user interface

Figure 5.3. DALI Communication Example

AN1220: DALI Communication Using the EFR32
Testing

silabs.com | Building a more connected world. Rev. 0.2 | 18

6. Revision History

Revision 0.2

September, 2023
• Added EFR32xG22, EFx32xG23, EFR32xG24, EFR32FG25, EFR32xG27, and EFx32xG28 to 1. Device Compatibility
• Added section 4.2 EFR32xG24 Software Example
• Updated sections 3.1 Hardware Resources and 5. Testing
• Moved software examples to Silicon Labs Platform Applications Examples Github repository
• Updated terminology according to Silicon Labs’ Inclusive Lexicon Project

Revision 0.1

September, 2019
• Initial Revision

AN1220: DALI Communication Using the EFR32
Revision History

silabs.com | Building a more connected world. Rev. 0.2 | 19

https://www.silabs.com/about-us/inclusive-lexicon-project

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1. Device Compatibility
	2. DALI Overview
	2.1 Terminology
	2.2 Introduction
	2.3 Frame Structure
	2.3.1 Manchester Encoding
	2.3.2 Forward Frame
	2.3.3 Backward Frame

	2.4 Timing
	2.5 Physical Layer

	3. Hardware Description
	3.1 Hardware Resources

	4. Software Description
	4.1 EFR32MG12 and EFR32xG21 Software Examples
	4.1.1 Build Options
	4.1.2 PRS Producers and Consumers
	4.1.3 DALI Frame Transmission
	4.1.4 DALI Frame Reception
	4.1.5 API
	4.1.6 Events and Interrupts
	4.1.6.1 DALI Main
	4.1.6.2 DALI Secondary
	4.1.6.3 Comparison

	4.2 EFR32xG24 Software Example
	4.2.1 Build Options
	4.2.2 Events and Interrupts
	4.2.2.1 DALI Main
	4.2.2.2 DALI Secondary

	5. Testing
	5.1 Test Setup
	5.2 Example User Interface
	5.3 Test Procedure

	6. Revision History

