
AN1304: GPIO Expander Based on EFM8
MCU Product Family

This is a code example running on the EFM8 8bit MCU product
family, which can be reused to implement an I2C/SMBus GPIO
Expander. This covers all the EFM8 products via macros.
For example, when concerned about power consumption, customers may choose the
EFM8SB devices. When concerned with cost, customers may use the EFM8BB devices.

The following MCU product families are supported:
• EFM8BB1 product family
• EFM8BB2 product family
• EFM8BB3 product family
• EFM8BB51 product family
• EFM8BB52 product family
• EFM8SB1 product family
• EFM8SB2 product family

KEY POINTS

• 8-24 additional GPIOs
• Input and output selectable
• Input and output selectable
• Push/pull/OD selectable
• Interrupt capable
• Sleep mode

silabs.com | Building a more connected world. Rev. 0.2

1. Introduction

EFM8 devices offer Port 0, Port 1, and Port 2 (for the EFM8BB3 and EFM8BB52 MCU product family) as expanded GPIOs. In this way,
usage of port-related SFRs is kept simple.

For communication, EFM8 devices use the SMBus peripheral in slave-mode. Default SMBus address is 0x78 (7bit addressed). SDA
and SCL pins are defined out of Port 0/Port 1 by Xbar. Furthermore, an additional GPIO pin has been defined (as input) for address
extension bit. If this input is connected to GND, the default SMBus slave address changes from 0x78 to 0x79. This solution allows the
use of two EFM8s as IOEXPANDER and doubles the number of available I/O pins.

A further pin, configured as output, serves as interrupt output. Its default value is high and goes low in any cases when any pin of Port
0/Port 1, which is configured as input changes. Acknowledging this signal (rearming the interrupt) can happen through the I2C/SMBus
interface.

Note: I/Os on Port 2 on EFM8BB3 and EFM8BB52 MCU product family cannot be used as an interrupt source.

All functionality has been implemented by I2C/SMBus commands except items listed above and controlling of reset of EFM8 devices to
terminate STOP/SHUTDOWN operating modes.

AN1304: GPIO Expander Based on EFM8 MCU Product Family
Introduction

silabs.com | Building a more connected world. Rev. 0.2 | 2

2. I2C/SMBus Interface Commands

The following table contains all commands that have been implemented.

Table 2.1. I2C/SMBus Interface Commands

CMD AUTO-INCREMENT FUNCTION PROTOCOL

0x00 Disable Input Port 0 Read

0x80 Enable Input Port 0 Read

0x01 Disable Input Port 1 Read

0x81 Enable Input Port 1 Read

0x04 Disable Output Port 0 Read/Write

0x84 Enable Output Port 0 Read/Write

0x05 Disable Output Port 1 Read/Write

0x85 Enable Output Port 1 Read/Write

0x08 Disable Polarity Inversion Port 0 Read/Write

0x88 Enable Polarity Inversion Port 0 Read/Write

0x09 Disable Polarity Inversion Port 1 Read/Write

0x89 Enable Polarity Inversion Port 1 Read/Write

0x0C Disable Configuration Port 0 Read/Write

0x8C Enable Configuration Port 0 Read/Write

0x0D Disable Configuration Port 1 Read/Write

0x8D Enable Configuration Port 1 Read/Write

0x10 Disable Drive Strength Port 0 Read/Write

0x90 Enable Drive Strength Port 0 Read/Write

0x11 Disable Drive Strength Port 1 Read/Write

0x91 Enable Drive Strength Port 1 Read/Write

0x70 Disable Set SLEEP mode Write

0xF0 Disable Set SLEEP mode Write

0x78 Disable Device ID Byte 0 Read

0xF8 Enable Device ID Byte 0 Read

0x79 Disable Device ID Byte 1 Read

0xF9 Enable Device ID Byte 1 Read

0x7A Disable Device ID Byte 2 Read

0xFA Enable Device ID Byte 2 Read

0x7B Disable Device ID Byte 3 Read

0xFB Enable Device ID Byte 3 Read

Note: Notes (operation instructions):
1. The Polarity Inversion command sets a mask which is XORed with a register value for reading Input or with the output-pattern for

writing Output. Reading Output happens without involving the Polarity Inversion Mask and mirrors the natural state of port latch.

AN1304: GPIO Expander Based on EFM8 MCU Product Family
I2C/SMBus Interface Commands

silabs.com | Building a more connected world. Rev. 0.2 | 3

2. Configuration command example: 0x0D 0x70 sequence configures P1.4, P1.5, and P1.6 port pins as output (push-pull) while the
others are kept in input (open-drain) state;

3. DRIVE strength command examples: 0x10 0x01 sequence sets HIGH-DRIVE-STRENGTH on P0; 0x90 0x00 0x00 sequence sets
LOW-DRIVE-STRENGTH both on P0 and P1. Driver strength cannot be set for the P2 port on the EFM8BB3 and EFM8BB52 fami-
ly devices.

4. SLEEP command stops the SoC, which remains in this state until reset occurs. This command has only one parameter: 0x01-
cause STOP state of the SoC. Future improvement of this command can extend its capability to reach other low energy modes as
well. Although 0xF0 has kept for command format compatibility reason, AUTO-INCREMENT functionality is meaningless for
SLEEP command: 0x70 0x01 and 0xF0 0x01 sequences have the same result.

5. Logic behind AUTO-INCREMENT: AUTO-INCREMENT functionality makes it possible to read or write multiple bytes without need-
ing to set the address byte every case.

6. Device ID usage example: 0x78, 0x79, 0x7A, 0x7B commands read back the hardcoded 'I', 'O', 'X', 'P' characters respectively;
7. The Device ID command supports AUTO-INCREMENT functionality as well, but 0xF8 is unique in this point of view. With the help

of AUTO-INCREMENT, Device ID command can read out the value of DEVICEID, DERIVID, REVID, SMB0ADR registers, and UID
from FLASH (BB2, BB3: 0xFFCF-0xFFC0), or from XRAM (BB1, SB1: 0xFF-0xFC; SB2: 0x0FFF-0x0FFC) after the 'IOXP' signa-
ture string; Sequence can be: 0xF8 0x18; Though the number of bytes to read is not maximized, there is no possibility of over read.
If the number of bytes to read is bigger than the length of Device ID, the remaining place is filled with the part of repeated Device
ID.

8. Command codes not listed are reserved.

Figure 2.1. Example of SMBus Transition

AN1304: GPIO Expander Based on EFM8 MCU Product Family
I2C/SMBus Interface Commands

silabs.com | Building a more connected world. Rev. 0.2 | 4

3. Sensing of Input Changes by Interrupt

1. P0 and P1 are configured as a source of matching interrupt. At initialization state, all pins are involved to a matching mask. This
mask(s) can change each time pin configuration changes (PnMDOUT).

2. When any of the pins, which are configured as input, have changed, the matching ISR is called.
3. Matching ISR sets (pulls to low) the output pin and disables Port Matching Interrupt (EMAT).
4. The SW keeps this state until P0 and P1 have read through I2C/SMBus command.
5. When P0 and P1 are reading, their current state is saved to PnMAT register as the new expected value.
6. Rearm Port Matching Interrupt (EMAT).

AN1304: GPIO Expander Based on EFM8 MCU Product Family
Sensing of Input Changes by Interrupt

silabs.com | Building a more connected world. Rev. 0.2 | 5

4. Test Application on EFR32 MCU Family

For test reasons and as an operating example, an application example has been implemented on the EFR32 family. More information
on this example application can be found on the Silicon Labs GitHub page under the application_examples/platform/platform_applica-
tions/platform_i2c_test_for_efm8_ioexpander folder.
• Its basic functionality: The application works as an I2C master and can sense the interrupt signal from IOEXPANDER as a simple

input.
• It offers a serial console and a command interpreter to ensure a test interface for IOEXPANDER.
• The application checks the interrupt input in a polling process and lights an LED when it receives a signal from the IOEXPANDER.

Table 4.1. Available Commands of the Test Application

COMMAND DESCRIPTION

loop Execute commands repeatedly

addr Get/Set I2C slave address

read Read register from IOEXP

write Write register of IOEXP

mod Read Modify Write a register of IOEXP

sleep Set a waiting time period (msec)

time Get current system time

ver Get build information

Figure 4.1. Example of Test Application Console

AN1304: GPIO Expander Based on EFM8 MCU Product Family
Test Application on EFR32 MCU Family

silabs.com | Building a more connected world. Rev. 0.2 | 6

Figure 4.2. Using the “mod” Command Correctly

AN1304: GPIO Expander Based on EFM8 MCU Product Family
Test Application on EFR32 MCU Family

silabs.com | Building a more connected world. Rev. 0.2 | 7

5. Hardware Configuration Guide

Every device has a different default pin configuration to fit the appropriate SLSTK. However these pins, which are used for SCL, SDA,
interrupt or address extension are configurable through .hwconf and EFM8_IOEXP_common.h files with the following limitations:
• SCL and SDA pins are controlled by crossbar so must be in its range.
• Port0 (0.0-0.7) and Port1(1.0-1.7) should be keep free, as far as it possible.

Figure 5.1. Example of Connection Between EFR32 and EFM8BB3

Configuration in EFM8_IOEXP_common.h

 // P0.0 - P0.7 delegated as port 0;
 // P1.0 - P1.7 delegated as port 1;
 // P2.4 - P2.6 delegated as port 2 (port2.5-port2.7);
 // P3.0 - P3.4 delegated as port 2 (port2.0-port2.4);
 // MCU STK2022A Function
 // port port description
 // P2.0 EXP12 SMB SDA;
 // P2.1 EXP14 SMB SCL;
 // P2.2 ----- ADDR_EXT;
 // P2.3 EXP03 INP_CHANGED_IRQ;
 SI_SBIT(IOEXP_INP_CHANGED_IRQ, SFR_P2, 3);
 SI_SBIT(IOEXP_ADDR_EXT, SFR_P2, 2);
 #define P0DEVMASK 0xFF
 #define P1DEVMASK 0xFF
 #define P2DEVMASK 0x70
 #define P3DEVMASK 0x1F

AN1304: GPIO Expander Based on EFM8 MCU Product Family
Hardware Configuration Guide

silabs.com | Building a more connected world. Rev. 0.2 | 8

6. Revision History

Revision 0.2

March, 2021
• Added support for the EFM8BB51 product family

Revision 0.1

December, 2020
• Initial release.

AN1304: GPIO Expander Based on EFM8 MCU Product Family
Revision History

silabs.com | Building a more connected world. Rev. 0.2 | 9

IoT Portfolio
www.silabs.com/products

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Smart. Connected.
Energy-Friendly.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,
Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS,
Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Hold-
ings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks
of their respective holders.

	1. Introduction
	2. I2C/SMBus Interface Commands
	3. Sensing of Input Changes by Interrupt
	4. Test Application on EFR32 MCU Family
	5. Hardware Configuration Guide
	6. Revision History

