

silabs.com | Building a more connected world. Copyright © 2023 by Silicon Laboratories Rev. 0.3

AN1319: Bluetooth® Mesh Device Firmware
Update

This application note provides background information on the
Bluetooth Mesh Device Firmware Update feature. It describes
the BLOB transfer, the DFU roles in a Bluetooth mesh network,
the models required for these roles, and the firmware update
process.

KEY POINTS

• Bluetooth Mesh Device Firmware Up-
date roles

• Bluetooth Mesh Firmware Distribution
models

• Bluetooth Mesh Firmware Update mod-
els

• Bluetooth Mesh BLOB Transfer models
• Bluetooth Mesh Firmware Update Pro-

cess

 AN1319: Bluetooth Mesh Device Firmware Update
 Introduction

silabs.com | Building a more connected world. Rev. 0.3 | 2

1 Introduction

Bluetooth Mesh Device Firmware Update is a new feature introduced in the Bluetooth Mesh specification v1.1. The Bluetooth Mesh
Device Firmware Update feature provides a standard way to update device firmware over the air. The feature enables the Bluetooth mesh
network to check for the availability of device firmware updates, update multiple devices simultaneously for the same firmware, and track
the progress of an update.

This document briefly describes the different types of nodes that are required to run device firmware updates in a mesh network. These
nodes play important roles in managing update images for the devices that need a firmware update and distributing the update images
to the nodes. This document also describes the procedures to perform a firmware update in a mesh network. To run the DFU examples
provided in the Bluetooth Mesh SDK, see AN1370: Bluetooth® Mesh Device Firmware Update Example Walkthrough.

https://www.silabs.com/documents/public/application-notes/an1370-bluetooth-mesh-device-firmware-update-example.pdf

 AN1319: Bluetooth Mesh Device Firmware Update
 Bluetooth Mesh DFU and BLOB Transfer

silabs.com | Building a more connected world. Rev. 0.3 | 3

2 Bluetooth Mesh DFU and BLOB Transfer

Bluetooth Mesh Device Firmware Update is designed as a two-layer architecture to run different protocols. The DFU layer runs the DFU
protocol for higher-level decision making that manages and coordinates firmware updates among different types of nodes. The BLOB
Transfer layer runs the underlying data transport protocol handling generic large binary object transfer. In principle, the BLOB Transfer
component could be used standalone for transferring any data objects that are much larger than the maximum Access Layer PDU size
between the network devices.

2.1 BLOB Transfer

The Bluetooth Mesh BLOB Transfer (MBT) is a component on a node transferring or receiving binary large objects (BLOBs) over a
Bluetooth Mesh network. The MBT client sends a BLOB to one or multiple nodes and the MBT server receives the BLOB. Bluetooth Mesh
Device Firmware Update uses the MBT component to transfer update images.

The following figure illustrates the concept of how the MBT component transfers an update image. The MBT client breaks an update
image into suitably-sized blocks based on the capabilities of the MBT servers and transfers these blocks to the servers. Each block is
composed of identically sized chunks of data, except for the last chunk which may be smaller than the other chunks if the block’s size is
not an integer multiple of the chunk’s size. A single message carries only a single chunk.

Figure 2-1. Bluetooth Mesh BLOB Transfer

The transfer may be performed in two modes: Push BLOB Transfer mode and Pull BLOB Transfer mode. The MBT client selects the
transfer mode based on the capabilities supported by the servers. The MBT server may support both or only one of these modes.

In the Push BLOB Transfer mode, the client controls the flow of chunks to the servers, sending all the chunks from a block, then queries
the servers to determine which chunks were received. All missing chunks are retransmitted.

In the Pull BLOB Transfer mode, the client transfers a BLOB typically to a single server at a time, although multiple simultaneous receivers
can be supported as well. The server requests chunks from the client as it can process them, and the flow of chunks is controlled by the
server.

A Low Power Node (LPN) typically only supports the Pull BLOB Transfer mode and therefore the Pull BLOB Transfer mode is typically
used only if some of the MBT servers are Low Power Nodes. This mode makes it possible for the MBT server to throttle the transfer
speed. This is necessary to ensure that no more chunks than the Friend node can store in its Friend Queue are transmitted at once.

The MBT client or server model is normally used as a transport in a higher-layer model such as the Firmware Update models.

 AN1319: Bluetooth Mesh Device Firmware Update
 Bluetooth Mesh DFU and BLOB Transfer

silabs.com | Building a more connected world. Rev. 0.3 | 4

2.2 Firmware Update Roles

Two to three roles participate in a firmware update over a Bluetooth mesh network: Initiator, Distributor, and Target Node, or Stand-alone
Updater and Target Node. The Stand-alone Updater and Distributor as well as the Initiator can also be Target nodes. A firmware update
is distributed simultaneously to the devices that have the same firmware. Sets of homogenous nodes are updated sequentially.

Figure 2-2. Firmware Update Roles

• Initiator role – checks for available updates for the firmware running on Target nodes that are included in a list provided by a higher-
layer application and then sends the new firmware images to a Distributor. The procedures performed by an Initiator are controlled
by a higher-layer application. An Initiator might be a smartphone or gateway device that periodically checks product websites for the
availability of new firmware images.

• Distributor role – delivers new firmware images to the Target nodes and monitors the progress of the firmware update. The Distributor
acts as an intermediary on behalf of the Initiator so that the Initiator does not always need to be present on the mesh network. The
Distributor reports progress back to the Initiator when requested. The Distributor continues to have the configured functionality when
distributing updates.

• Stand-alone Updater role – checks for available updates for the firmware running on Target nodes and delivers the new firmware
images directly to the Target nodes. A Stand-alone Updater might be a smartphone or mesh gateway device that has access to the
Internet while present on the mesh network to check for the availability of new firmware images for the Target nodes. When a new
firmware image is available, it manages the delivery of the firmware image to the Target nodes without an intermediary Distributor.

• Target Node role – receives firmware updates and updates itself. The Target node stays in normal operation until a reboot with the
new firmware.

 AN1319: Bluetooth Mesh Device Firmware Update
 Bluetooth Mesh DFU and BLOB Transfer

silabs.com | Building a more connected world. Rev. 0.3 | 5

2.3 Firmware Update Models

The Bluetooth Mesh Model specification v1.1 adds new models to support the Bluetooth Mesh Device Firmware Update feature. There
are no changes in the Bluetooth Mesh Profile specification. The table below summarizes the models required by each role that participates
in firmware updates. A node may support multiple roles. For example, a Distributor may support the Target node role.

Table 1. Mapping of Roles to Models Used in Device Firmware Updates

Role
Firmware

Distribution
Client

Firmware
Distribution

Server

Firmware
Update
Client

Firmware
Update
Server

BLOB
Transfer

Client

BLOB
Transfer
Server

Target node – – – M – M

Initiator M – M – M –

Distributor – M M – M M

Stand-alone Updater C.1 C.2 M – M C.2

M: Mandatory

C.1: Mandatory if Initiator role is supported, otherwise optional

C.2: Mandatory if Distributor role is supported, otherwise optional

• Firmware Distribution Client is the model used by the Initiator to send the firmware image and the firmware distribution parameters

to the Distributor, and to start the firmware image transfer.
• Firmware Distribution Server is the model used by the Distributor to receive from the Initiator the firmware update parameters, the

set of Target nodes to update, and the firmware image to transfer. This model can transfer one firmware image at a time.
• Firmware Update Client is the model used by the Distributor and Initiator to manage firmware updates. The Initiator uses this model

to retrieve the information about the firmware subsystems installed on the Target node, and to get the download URIs of the new
firmware images. The Distributor uses this model to start a firmware image transfer to the Target nodes.

• Firmware Update Server is the model used by the Target node to report the firmware images installed on the node and the download
URI of new firmware images, and to initiate a firmware update to receive a new firmware image.

• BLOB Transfer Client is the model used to transfer BLOBs over a Bluetooth Mesh network. An MBT client can transfer a BLOB to
one or more MBT servers, either unicasting or multicasting depending on the situation.

• BLOB Transfer Server is the model used to receive BLOBs over a Bluetooth mesh network from an MBT client.

 AN1319: Bluetooth Mesh Device Firmware Update
 Bluetooth Mesh Firmware Update Process

silabs.com | Building a more connected world. Rev. 0.3 | 6

3 Bluetooth Mesh Firmware Update Process

Multiple Target nodes can be updated either simultaneously using a multicast address or individually using unicast addresses. For effi-
ciency, a multicast address should be used when multiple Target nodes indicate that they can accept the same firmware image. The
Initiator does this by adding all Target nodes that support the same firmware image to the Target nodes list that is transferred to the
Distributor. The Initiator transfers the firmware image to the Distributor and the Distributor distributes the firmware image to the nodes in
the Target nodes list. Finally, the Target nodes apply the firmware image when the Distributor instructs them to do so. The Initiator can
order the Distributor to either trigger applying the update immediately after the transfer is complete, or to wait for another message from
the Initiator before applying the new firmware.

The Initiator optionally can transfer multiple firmware images to the Distributor, but the Distributor can distribute only one firmware image
to Target nodes in a firmware update. This means that some nodes may not participate in the firmware update. The Initiator manages
firmware images that are identified by the Firmware ID and determines what nodes are to be included in the Target nodes list.

The following figure illustrates an example of the case that only the nodes running the same firmware accept the firmware update. The
mesh network has two sets of Target nodes running different firmware, one running Firmware X v1.0 (blue nodes: A, F, and C) and
another running Firmware Y v1.0 (yellow nodes: B, E, H, I, and G). Both belong to the same network. The Distributor Node D is distributing
Firmware X v2.0.

The blue nodes accepted the Firmware X v2.0. They therefore have subscribed to a multicast address and are simultaneously updating
their firmware to version X v2.0. The yellow nodes are not participating in the firmware update because they did not accept the Firmware
X v2.0 during the compatibility check and were not added to the Target nodes list by the Initiator.

Figure 3-1. Distributor Updates Only Nodes that Accept the Firmware ID and Version

The following subsections briefly review the firmware update process.

3.1 Setting Up an Update

The first step is to set up an update. The Initiator polls the Target nodes for their update URIs and current firmware. The Initiator uses the
information to get a newer firmware image and its metadata. The Initiator transfers a Target nodes list and an update image to the
Distributor. The Initiator then starts the firmware distribution process. When the distribution is started, the Initiator specifies to the Distrib-
utor whether the update should be applied immediately after the transfer completes, or whether the update should be applied only after
the Initiator sends a message to the Distributor to trigger applying the update. This mechanism can be used to defer rebooting the devices
to a suitable time.
• The Initiator receives a list of Target nodes from the higher-layer application.
• When a new firmware image is available, the Initiator optionally may check whether nodes in the Target nodes list can accept the new

firmware image. The nodes also inform the Initiator whether they will become unprovisioned or will have some changes to their
composition data. The same information will be provided to the Distributor later on in the process.

• The Initiator optionally may check the information of the firmware images stored on a Distributor and can remove a firmware image
from the Distributor at any time.

• The Initiator is not necessarily present on the mesh network after the distribution has started.
• The Initiator may check the status of the firmware image distribution via the Distributor at any time.

 AN1319: Bluetooth Mesh Device Firmware Update
 Bluetooth Mesh Firmware Update Process

silabs.com | Building a more connected world. Rev. 0.3 | 7

Figure 3-2. Firmware Update Process: Setting Up an Update

3.2 Starting an Update

The Distributor has received an update image, a Target nodes list, and the Distribution Start command from the Initiator. The Distributor
notifies the Target nodes to prepare for an update and sends the metadata of the update image to the Target nodes. The Distributor then
negotiates suitable BLOB Transfer parameters with the Target nodes and starts the BLOB Transfer.
• The Target nodes check the metadata and may reject the update.
• The Target nodes inform the Distributor whether they will become unprovisioned after the update or not, and whether they will have

changes to their composition data, based on the metadata.
• Upon a request from the Initiator to retrieve the progress of the firmware update for each Target node, the Distributor provides a list

of Target nodes and the progress of the firmware image transfer, the update phase of the transfer, and any potential errors.

Figure 3-3. Firmware Update Process: Starting an Update

 AN1319: Bluetooth Mesh Device Firmware Update
Bluetooth Mesh Firmware Update Process

silabs.com | Building a more connected world. Rev. 0.3 | 8

3.3 Sending the Update Image

The MBT client sends the update image to the MBT servers. Section 2.1 BLOB Transfer explains how an update image is transferred.

In the Push BLOB Transfer Mode, the Distributor transfers the chunks from a block to the Target nodes. After the Distributor has sent all
chunks of a block, the Distributor queries the Target nodes to report missing chunks and transfers each missing chunk to the Target
nodes, until no missing chunks are reported. The Distributor then moves on to next block, until all blocks are sent.

In the Pull BLOB Transfer Mode, the Distributor receives an initial list of chunks from the Target nodes and transfers the chunks from the
initial list to the Target nodes. The Distributor then waits for the BLOB Partial Block Report from the Target nodes before transferring the
next set of chunks. The Distributor repeats the step transferring the requested chunks to the Target nodes until all blocks are sent.
• The higher-layer application can cancel the BLOB Transfer at any time.

Figure 3-4. Firmware Update Process: Sending the Update Image

3.4 Applying an Update

The firmware image distribution is complete when the Target nodes have received the update image. The Target nodes check the integrity
of the update image, and the Distributor polls them until all Target nodes complete. Then, if the Initiator had instructed the Distributor to
start applying the update immediately in the Distribution Start message, the Distributor instructs the Target nodes to apply the update
image. Otherwise, the Distributor waits for the applying signal from the Initiator before triggering applying the new firmware. The Target
nodes reboot with the new firmware.
• The higher-layer application can cancel the verify firmware procedure at any time.
• The Target nodes can remain provisioned or become unprovisioned after an update image is applied. The states of the Target nodes

are reported to the Distributor and Initiator.

 AN1319: Bluetooth Mesh Device Firmware Update
 Bluetooth Mesh Firmware Update Process

silabs.com | Building a more connected world. Rev. 0.3 | 9

Figure 3-5. Firmware Update Process: Applying an Update

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1 Introduction
	2 Bluetooth Mesh DFU and BLOB Transfer
	2.1 BLOB Transfer
	2.2 Firmware Update Roles
	2.3 Firmware Update Models

	3 Bluetooth Mesh Firmware Update Process
	3.1 Setting Up an Update
	3.2 Starting an Update
	3.3 Sending the Update Image
	3.4 Applying an Update

