

silabs.com | Building a more connected world. Copyright © 2023 by Silicon Laboratories Rev. 0.5

AN1370: Bluetooth® Mesh Device Firmware
Update Example Walkthrough

The Bluetooth mesh SDK comes with example projects that have
the Bluetooth Mesh Device Firmware Update feature enabled to
perform firmware updates in a Bluetooth mesh network. The
examples assume use of Silicon Labs devices for the distributor
node and the nodes whose firmware is to be updated, and the
Silicon Labs Bluetooth mesh mobile app as the provisioner and
initiator. This document describes the bootloader configurations
and the firmware update models in the example projects, and
walks through a firmware update demonstration.

KEY POINTS

• Short introduction to Bluetooth Mesh
Device Firmware Update

• Bootloader configurations
• DFU Distributor example application
• Firmware update models
• Silicon Labs Bluetooth Mesh mobile ap-

plication

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Introduction

silabs.com | Building a more connected world. Rev. 0.5 | 2

1 Introduction

The Bluetooth Mesh Model specification v1.1 defines a standard way to update device firmware over a Bluetooth mesh network. The
device firmware update process typically requires three types of nodes involved: Initiator and Distributor nodes, as well as the nodes
to be updated, called Target nodes. These roles are fulfilled by enabling the Firmware Update and BLOB Transfer models:
• Firmware Distribution Client
• Firmware Distribution Server
• Firmware Update Client
• Firmware Update Server
• BLOB Transfer Client
• BLOB Transfer Server

To understand the basics of the Bluetooth Mesh Device Firmware Update specification, see AN1319: Bluetooth® Mesh Device Firmware
Update.

This document explains the Bluetooth mesh examples, installed as part of the Bluetooth Mesh SDK, running as the Distributor and Target
nodes, and the Silicon Labs Bluetooth Mesh mobile app running as the Initiator. Section 2 Bootloader Configurations for Firmware Up-
dates describes the bootloader examples that are an essential program to boot up a Silicon Labs device and to update firmware on the
device. Section 3 Firmware Update Examples and Models discusses the models required for running the Distributor and Target nodes,
and how to create an update image archive. Section 4 Firmware Update Demonstration walks through a firmware update demo using the
Silicon Labs Bluetooth Mesh mobile app, the Distributor example, and other Bluetooth mesh examples as Target nodes.

1.1 Requirements

The following is required to run the DFU examples.
• At least two mainboards with a supported board installed, one used for the Distributor and the other(s) for the device firmware update

target(s).
• Simplicity Studio 5
• Gecko SDK Suite 4.2.2 (Bluetooth Mesh SDK 4.2.0) or later. The bootloader and DFU examples are included in the SDK.
• Silicon Labs Bluetooth Mesh Mobile Application

• Used for discovering and provisioning devices.
• Includes network, group, and publish-subscribe setup.
• Allows device configuration for Device Firmware Update.

Example projects and additional code development can be done with GCC (supplied with Simplicity Studio 5), IAR EWARM, or
command line tools.

https://www.silabs.com/documents/public/application-notes/an1319-bluetooth-mesh-device-firmware-update.pdf
https://www.silabs.com/documents/public/application-notes/an1319-bluetooth-mesh-device-firmware-update.pdf
https://www.silabs.com/products/development-tools/software/simplicity-studio
https://www.silabs.com/products/development-tools/software/bluetooth-low-energy/mobile-apps/ble-mesh

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Bootloader Configurations for Firmware Updates

silabs.com | Building a more connected world. Rev. 0.5 | 3

2 Bootloader Configurations for Firmware Updates

The Silicon Labs Gecko Bootloader is a common bootloader for all the newer wireless MCUs from Silicon Labs. The Gecko Bootloader
can be configured to perform a variety of bootload functions, from device initialization to firmware upgrades. The Gecko Bootloader uses
a proprietary format for its upgrade images, called GBL (Gecko Bootloader). These images are produced with the file extension “.gbl”.

The bootloader performs a firmware image update by writing the firmware update image to a region of flash memory referred to as the
download space. The download space is either an external memory device such as an EEPROM or a section of the device’s internal
flash. The bootloader partitions the download space into one or multiple storage slots and stores a single firmware update image in a
storage slot.

The bootloader example projects provided in the Gecko SDK Suite come with a preconfigured set of installed components and configu-
rations for different specifications of Silicon Labs MCUs. This section discusses the bootloader example configurations you can use to
build bootloaders for Bluetooth mesh applications and firmware updates. You may need to change the storage slot size by configuring
the Bootloader Storage Slot Setup under Storage components in the Platform > Bootloader Software Components in Simplicity Studio.
See Section 7 of UG489: Silicon Labs Gecko Bootloader User’s Guide for GSDK 4.0 and Higher for more information about the Gecko
Bootloader configurations.

2.1 Internal Flash Size

It is not recommended to use the devices that have internal flash smaller than 768 KB for Target nodes and smaller than 1 MB for the
Distributor to store firmware update images. You can use one of the following example projects depending on the internal flash size.
• Bootloader - SoC Internal Storage (single image on 768kB device) for Target nodes
• Bootloader - SoC Internal Storage (single image on 1MB device)
• Bootloader - SoC Internal Storage (single image on 1536kB device)
• Bootloader - SoC Internal Storage (single image on 1920kB device)
• Bootloader - SoC Internal Storage (single image on 2MB device)

The Target node requires only a single storage slot to store and apply a firmware image. The Distributor can optionally store multiple
firmware images but can distribute only one firmware image to Target nodes in a firmware update. To store multiple firmware images on
the Distributor, Silicon Labs recommends using external flash for multiple storage slots. The Bootloader - SoC Internal Storage (multi-
ple images on 1MB device) example project provides an example configuration of 2 storage slots on internal flash. Use this example
for the Distributor if the target device has at least 1920 KB of internal flash.

https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Bootloader Configurations for Firmware Updates

silabs.com | Building a more connected world. Rev. 0.5 | 4

2.2 Compressed Update Image

Use the Bootloader - SoC Internal Storage (single image with LZMA compression, 1MB flash) example project if the firmware image
is too big to fit the storage slot but the compressed firmware image can fit it. Section 3.4 Creating Update Image Archive describes how
to create a compressed firmware image.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Bootloader Configurations for Firmware Updates

silabs.com | Building a more connected world. Rev. 0.5 | 5

2.3 External Flash

Use the Bootloader - SoC SPI Flash Storage (single image) example project if the device's external flash is equal to or larger than 512
KB and smaller than 1 MB. Use the Bootloader - SoC SPI Flash Storage (single image with slot size of 1024k) example project if the
device’s external flash is equal to or larger than 1 MB. The external flash size should be at least 512 KB for Target nodes and at least
768 KB for the Distributor.

The Target node requires only a single storage slot to store and apply a firmware image. The Distributor can optionally store multiple
firmware images but can distribute only one firmware image to Target nodes in a firmware update. Use the Bootloader - SoC SPI Flash
Storage (multiple images) example project if you need of store multiple firmware images on the Distributor. With the bootloader config-
uration of 2 storage slots, at least 1 MB of external flash is recommended.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Examples and Models

silabs.com | Building a more connected world. Rev. 0.5 | 6

3 Firmware Update Examples and Models

To perform firmware updates, you need an Initiator, a Distributor, and at least one Target node. This section describes the setup to run
the Distributor and Target nodes examples provided in the Bluetooth mesh SDK, and the procedures to create an update image archive.
See QSG183: Bluetooth Mesh SDK Quick-Start Guide for Bluetooth Mesh 1.1 for an introduction to configuring and building your own
projects, and for a guide to additional resources.

The Initiator and Stand-alone Updater are not discussed in this document. However, these functionalities are demonstrated using the
Silicon Labs Bluetooth Mesh mobile app, described in Section 4 Firmware Update Demonstration and Section 5 Firmware Update with
Stand-alone Updater, respectively.

Firmware storage is an important part of the device firmware update process. The flash memory is managed by and accessed via the
bootloader. See Section 2 Bootloader Configurations for Firmware Updates for the flash configurations. The table in Section 6 Appendix
– Silicon Labs Product Positioning for Bluetooth Mesh DFU is a recommendation of the Silicon Labs parts for running the DFU roles.

3.1 Distributor Example Application

The Distributor example application is provided as a pre-built demo binary image, ready to download and use, and a corresponding
example project that you can modify and then build for the target part. The precompiled demo is only available for selected EFR32xG21
and EFR32xG24 parts.

This section describes how to build the example project and run the example application on a Silicon Labs device. The example is only
available for a limited set of parts, including selected EFR32xG12, xG21 and xG24 parts.

Open Simplicity Studio 5 with a compatible SoC wireless kit connected to the computer. Select the part in Debug Adapters view to open
the Launcher perspective.
1. Click the Example Projects & Demos tab.
2. To see only the example projects, turn off Demos.
3. Under Technology Type, filter on Bluetooth Mesh.
4. Next to the Bluetooth Mesh – SoC DFU Distributor, click CREATE, modify project settings, click FINISH.
5. Build and flash the project to the device.

The example has the components that are required for the Distributor functionality installed by default. To enable the Distributor function-
ality in other Bluetooth mesh projects, install the DFU distributor component that automatically brings the necessary model components:
1. Open the project .slcp file in Project Explorer view of the Simplicity IDE perspective.
2. Click the Software Components tab.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Examples and Models

silabs.com | Building a more connected world. Rev. 0.5 | 7

3. Select the DFU distributor component under Bluetooth Mesh > DFU Roles and click Install.

This component automatically installs the following model components:
• Bluetooth Mesh > Models > Firmware Update > Firmware Distribution Server
• Bluetooth Mesh > Models > Firmware Update > Firmware Update Client
• Bluetooth Mesh > Models > Transport > BLOB Transfer Client
• Bluetooth Mesh > Models > Transport > BLOB Transfer Server

See Section 3.3 DFU Model Configurations for the configurations of these Firmware Update and BLOB Transfer models.

3.2 Target Node Applications

A Target node is a node whose firmware is to be updated. The Bluetooth mesh examples provided in the Bluetooth mesh SDK except
Bluetooth Mesh – NCP Empty and Bluetooth Mesh – SoC Empty have the firmware update functionality enabled by default, i.e., are
Target nodes.

These example applications are provided both as prebuilt demo binary images, ready to download and use, and corresponding example
projects that you can modify and then build for the target part. The precompiled demos are only available for a limited set of parts,
including selected EFR32xG13, xG21 and xG24 parts and BGM13 and MGM21 modules. The examples can be built for any part sup-
ported by the Bluetooth Mesh SDK.

Note: EFR32xG22 parts have limited support for Bluetooth Mesh.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Examples and Models

silabs.com | Building a more connected world. Rev. 0.5 | 8

To build an example project for the device firmware update target, refer to the procedure described in Section 3.1 Distributor Example
Application.

The examples have the components that are required for the Target node functionality installed by default. To enable the Target node
functionality in other Bluetooth mesh projects, install the DFU target node component that automatically brings the necessary model
components:
1. Open the project .slcp file in Project Explorer view of the Simplicity IDE perspective.
2. Click the Software Components tab.
3. Select the DFU target node component under Bluetooth Mesh > DFU Roles in the left panel and click Install.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Examples and Models

silabs.com | Building a more connected world. Rev. 0.5 | 9

This component automatically installs the following model components:
• Bluetooth Mesh > Models > Firmware Update > Firmware Update Server
• Bluetooth Mesh > Models > Transport > BLOB Transfer Server

See Section 3.3 DFU Model Configurations for the configurations of these Firmware Update and BLOB Transfer models.

3.3 DFU Model Configurations

This section describes the main settings of the Firmware Update and BLOB Transfer models. Open the project .slcp file in Project Explorer
view of the Simplicity IDE perspective.
1. Click the Software Components tab.
2. Select Bluetooth Mesh > Models > Firmware Update or Bluetooth Mesh > Models > Transport in the left panel.
3. Click the gear icon next to the model to be configured.

3.3.1 Firmware Distribution Server

Configuration of Bluetooth Mesh > Models > Firmware Update > Firmware Distribution Server:

Configuration Option Description Default Value

Max node list size Maximum number of firmware update server nodes which can
participate in the distribution. Range: 1 to 65535. 8

Default Multicast Threshold

If the number of servers for any step exceeds or is equal to this
number then the group address will be used, otherwise servers will
be looped through one by one. Range: 1 to 65535. The value of 0
disables the feature.

1

Retry time of message transmissions Retry time of firmware update message transmissions. Range: 0 to
65535. 3000

NVM key of the firmware list NVM key of the firmware list. Range: 0 to 65535. 16393

Enable Logging Enable / disable logging of Firmware Distribution Server model
specific messages. On

Enable Logging:
Enable BT Mesh Stack Platform Callback
Logging

Enable / disable logging of BT Mesh Stack Firmware Distribution
Server model platform callbacks. The FW Distribution Server
model in BT Mesh stack calls platform callback functions to query
the remaining space, firmware count and firmware information.

Off

Enable Logging:
Text prepended to every log message

Every log message in the component is started with this text. FwDistributor

3.3.2 Firmware Update Server

Configuration of Bluetooth Mesh > Models > Firmware Update > Firmware Update Server:

Configuration Option Description Default Value
General

Number of firmware on device Number of firmware on device. Range: 1 to 255. 1
Maximum length of metadata Maximum length of metadata. Range: 0 to 255. 255 / LPN:31

Firmware Information
Firmware identifier Firmware identifier fwid or <specific_node_id>
Update URI Update URI https://example.com/upd_uri
Company Identifier:
CID MSB

Most Significant Byte of the Company ID. Hexadecimal string
literal. \x02

Company Identifier:
CID LSB

Least Significant Byte of the Company ID. Hexadecimal
string literal. \xFF

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Examples and Models

silabs.com | Building a more connected world. Rev. 0.5 | 10

Configuration Option Description Default Value
Logging

Logging Enable / disable logging of Firmware Update Server model
specific messages. On

Logging:
Period of verification UI update [ms]

Setting it to 0 the user interface (log & display) is updated
every time when progress is made. Range: 0 to 2000. Step:
100.

200

The weak functions for the Firmware Update Server model are mostly implementation-dependent and can be overwritten in the applica-
tion:

Function Description
sl_btmesh_fw_update_server_metadata_check_start() User callback indicating start of metadata check
sl_btmesh_firmware_update_server_metadata_check_step() User callback executing one step of metadata check
sl_btmesh_fw_update_server_verify_start() User callback for determining the maximum chunk size of verification
sl_btmesh_fw_update_server_verify_step() User callback to execute one step of the verification
sl_btmesh_fw_update_server_apply() User callback indicating firmware apply request

See <sdk>/app/bluetooth/common/btmesh_firmware_update_server/sl_btmesh_firmware_update_server_api.h
for further information.

Note: A Target node will become unprovisioned by default after a firmware update. You can overwrite the following functions in
sl_btmesh_firmware_update_server_api.c and modify the code described below to change the behavior:

• sl_btmesh_fw_update_server_apply() – remove sl_btmesh_node_reset() and sl_bt_nvm_erase_all().
 if (BOOTLOADER_OK == bootloader_setImageToBootload(idx)) {
 // Reset node
 sl_btmesh_node_reset();
 // Erase NVM data
 sl_bt_nvm_erase_all();
 // Delay install
 sl_simple_timer_start(&timer, 1000, apply_step, NULL, true);
 apply_cntdwn = APPLY_DELAY;
 }

• sl_btmesh_fw_update_server_metadata_check_start() – set another value to *additional_information. The
additional information is provided to the Bluetooth mesh stack and will appear in the Firmware Update Status and Firmware
Update Firmware Metadata Status messages.
 *additional_information = BTMESH_FW_UPDATE_SERVER_ADDITIONAL_INFORMATION_UNPROVISION;

• sl_btmesh_firmware_update_server_metadata_check_step() – set another value to *additional_infor-
mation. The additional information is provided to the Bluetooth mesh stack and will appear in the Firmware Update Status
and Firmware Update Firmware Metadata Status messages.
 *additional_information = BTMESH_FW_UPDATE_SERVER_ADDITIONAL_INFORMATION_UNPROVISION;

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Examples and Models

silabs.com | Building a more connected world. Rev. 0.5 | 11

3.3.3 BLOB Transfer Client

Configuration of Bluetooth Mesh > Models > Transport > BLOB Transfer Client:

Configuration Option Description Default Value

Enable Logging Enable / disable logging of BLOB Transfer Client model specific
messages. On

Enable Logging:
Text prepended to every log message

Every log message in the component is started with this text. BlobTfClient

Enable Logging:
Log BLOB Status messages

Log the content of BT Mesh BLOB status messages. 1

BLOB Transfer Limits:
Max number of servers

Maximum number of BLOB transfer servers that can be serviced in
a transfer (affects BT Mesh stack memory usage). Range: 1 to
1008.

8

BLOB Transfer Limits:
Max number of blocks

Maximum number of blocks supported in a BLOB Transfer (affects
BT Mesh stack memory usage). Range: 1 to 1888. 1850

BLOB Transfer Limits:
Max number of chunks per block

Maximum number of chunks per block supported in a BLOB
Transfer (affects BT Mesh stack memory usage). Range: 1 to
2000.

128

BLOB Transfer Limits:
Max chunk size

Maximum chunk size that can be selected during BLOB Transfer.
Range: 1 to 241. 241

Retry and Separation parameters:
Default separation time between chunks

Default minimum separation time between two chunks in the same
block. Range: 0 to 65535. 0

Retry and Separation parameters:
Default max retry of message transmissions

Default max retries of message transmissions (query info, transfer
start, block start, block query). Range: 0 to 1000. 50

Retry and Separation parameters:
Default retry time of message transmissions

Default retry time of message transmissions (query info, transfer
start, block start, block query). Range: 0 to 65535. 2000

The weak functions for the BLOB Transfer Client model are mostly implementation-dependent and can be overwritten in the application:

Function Description

sl_btmesh_blob_transfer_client_calculate_block_size_log()

Calculates the binary logarithm of the block size for the current BLOB
transfer from the provided parameters, which are the result of the
Retrieve Capabilities procedure of the BLOB Transfer. The
parameters passed represent the aggregated capabilities of the
BLOB transfer client and every BLOB transfer server which
participates in the current transfer. The default implementation
calculates the greatest possible block size from the parameters.

sl_btmesh_blob_transfer_client_calculate_chunk_size()

Calculates the chunk size for the next block in the current BLOB
transfer from the previously selected binary logarithm of the block
size and from the result of the Retrieve Capabilities procedure of the
BLOB Transfer. The default implementation calculates the greatest
possible chunk size.

See <sdk>/app/bluetooth/common/btmesh_blob_transfer_client/sl_btmesh_blob_transfer_client.h for further in-
formation.

3.3.4 BLOB Transfer Server

Configuration of Bluetooth Mesh > Models > Transport > BLOB Transfer Server:

Configuration Option Description Default Value
General

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Examples and Models

silabs.com | Building a more connected world. Rev. 0.5 | 12

Configuration Option Description Default Value

Min Block Size Log

Block states need to be monitored. The smaller the blocks, the
bigger the state storage. Range: 6 to 32.
Note that decreasing the minimum block size will result in
increased heap usage. Change this value with care.

9

Max Block Size Log

Blocks are cached on heap before being written into NVM. Range:
6 to 32.
Note that increasing the maximum block size will result in
increased heap usage. Change this value with care.

9

Maximum of number of chunks per block Maximum of number of chunks per block. Range: 8 to 64. Step: 8. 16 / LPN:64

Maximum chunk size

If the max chunk size is 8, the chunk data fits into a single BT Mesh
advertisement message. If the chunk data is segmented, N
segments can transfer (N*12)-7 bytes of data. Range: 8 to 241.
The advantage of a higher chunk size is higher throughput in a low
noise environment. The advantage of a lower chunk size is fewer
messages are retransmitted in a high noise environment due to lost
chunk messages.
LPN only: the number of chunk messages (segments) multiplied by
requested chunk count in Partial Block Report should fit into the
friend queue.

241 / LPN:8

Logging Enable / disable logging of BLOB Transfer Server model-specific
messages. On

Transfer Start user callback Enable / disable callback function when BLOB transfer starts. On
Transfer Progress user callback Enable / disable callback function when block transfer is finished. On
Transfer Done user callback Enable / disable callback function when BLOB transfer is finished. On

Supported Transfer Modes
Push Mode Push BLOB Transfer Mode. On / LPN: Off
Pull Mode Pull BLOB Transfer Mode. On
Pull Mode:
Number of chunks requested in Block Status
or Partial Block Report

Number of chunks requested in Block Status or Partial Block
Report. Range: 1 to 32. 4

Pull Mode:
Interval, in milliseconds, between Partial
Block Reports, if nothing is received

Interval, in milliseconds, between Partial Block Reports, if nothing
is received. Range: 1000 to 30000. Step: 100. 1000

Pull Mode:
Number of retries sending the same Partial
Block Report, before giving up

Number of retries sending the same Partial Block Report, before
giving up. Range: 1 to 10. 8

Pull Mode:
LPN Mode

Used on LPN nodes. Off / LPN:On

Pull Mode – LPN Mode:
LPN high throughput mode

In high throughput mode the LPN node polls the friend node more
frequently to increase the throughput at the expense of power
consumption.

On

Pull Mode – LPN Mode – LPN high
throughput mode:
LPN poll delay in milliseconds

The delay of first LPN poll when the BLOB Transfer Server expects
messages from the client after an event. The major part of BLOB
transfer to LPN is waiting for the poll timeout to elapse in order to
poll the friend node for BLOB Transfer messages. The maximum
number of messages that can be transferred per polling is equal to
the friend queue size during BLOB transfer to LPN. This poll delay
parameter makes the polling more frequent when BLOB Transfer
messages are expected to increase the throughput. Range: 100 to
30000. Step: 100.
The LPN poll delay should be less than
SL_BTMESH_LPN_POLL_TIMEOUT_CFG_VAL in
sl_btmesh_lpn_config.h file.

500

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Examples and Models

silabs.com | Building a more connected world. Rev. 0.5 | 13

Configuration Option Description Default Value
Pull Mode – LPN Mode – LPN high
throughput mode:
LPN poll logging

Enable / disable logging of LPN polls. Off

3.4 Creating the Update Image Archive

An update image archive is a gzip archive file that consists of:
• Manifest – a file named manifest.json, which is in the format of JavaScript Object Notation (JSON). It contains a description of the

firmware package, including the name of the firmware image file and an optional metadata file for the update.
• Firmware Image – the firmware image file in GBL format, as identified in the manifest file.
• Metadata – an optional file provided by the vendor and identified in the manifest file, that may provide metadata for the firmware

image.

This section describes the procedure to generate a firmware image, manifest file, and update image archive.

Step 1 – generating a firmware image

Building a C-based Bluetooth mesh application in Simplicity Studio does not automatically generate the OTA DFU update images (GBL
files). The GBL files need to be created separately by running a script located in the project's root folder. Two scripts are provided in the
SDK examples:
• create_bl_files.bat (for Windows)
• create_bl_files.sh (for Linux / Mac)

Define two environmental variables, PATH_SCMD and PATH_GCCARM shown in the following table, before running the script.

Variable Name Variable Value
PATH_SCMD C:\SiliconLabs\SimplicityStudio\v5\developer\adapter_packs\commander

PATH_GCCARM C:\SiliconLabs\SimplicityStudio\v5\developer\toolchains\gnu_arm\7.2_2017q4

Running the create_bl_files script creates six GBL files in a subfolder named output_gbl. The file named application.gbl is the
firmware update image.

If you use a bootloader that supports LZMA compression of the firmware update image, as described in Section 2.2 Compressed Update
Image, you must compress the GBL file with the –compress option of the commander utility. The create_bl_files script does not support
compressed GBL update image generation. Therefore, run the following commands instead of the create_bl_files script and then the file
named application-lzma.gbl is the firmware update image. Change soc_btmesh_empty.axf to the name of your project firmware
image in the command line below.

arm-none-eabi-objcopy -O srec -R .text_apploader* -R .text_signature* soc_btmesh_empty.axf application.srec
commander gbl create application-lzma.gbl --app application.srec --compress lzma

For more information about the GBL file format, see Section 2 of UG489: Silicon Labs Gecko Bootloader User’s Guide for GSDK 4.0 and
Higher. For more information on using the Simplicity Commander commands, see UG162: Simplicity Commander Reference Guide.

Step 2 – creating a manifest file

Create a file named manifest.json that is a text file in JSON format containing the name of the firmware update image, the firmware ID
and optionally the name of the metadata file. The format of the manifest/firmware/firmware_id member is Base16. The mani-
fest/firmware/metadata_file member contains the metadata file name if present. The following is an example of the content of
the manifest.json file.

{
 "manifest": {
 "firmware": {
 "firmware_file": "application.gbl",
 "firmware_id": "4181C01592"
 }
 }
}

https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Examples and Models

silabs.com | Building a more connected world. Rev. 0.5 | 14

Step 3 – making an update image archive

Run the following command to generate a zipped tar archive:

tar czf firmware.gz application.gbl manifest.json

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Demonstration

silabs.com | Building a more connected world. Rev. 0.5 | 15

4 Firmware Update Demonstration

This section assumes you have flashed the Bluetooth Mesh – SoC DFU Distributor example application to one of the devices and the
Bluetooth Mesh – SoC Light example application to the other(s) and have created an update image archive for the light example.
Section 3 Firmware Update Examples and Models describes the setup of the examples and the update image archive.

The Bluetooth Mesh SDK comes with a DFU Python script that supports the provisioner and initiator functionalities. To use the script to
update device firmware, see AN1422: Provisioning and Firmware Update Using the DFU Python Script.

The examples display firmware update status on the device’s LCD and output detailed information of the firmware update process to
VCOM UART. To see the logs, open a serial terminal on the serial port assigned for the device with the following serial settings: baud
rate 115200, data bits 8, stop bits 1 and parity None.
1. Provision and configure the Distributor node.

1. Go to the Provision view and tap Scan at the top right.
2. Tap PROVISION next to the Distributor device and tap Continue at the top right.
3. In the Device Configuration view, tap Group and then select Demo group.
4. In the Device Configuration view, tap Functionality and then select Firmware Distribution Server.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Demonstration

silabs.com | Building a more connected world. Rev. 0.5 | 16

2. Provision and configure at least one Target node.
1. Go to the Provision view and tap Scan at the top right.
2. Tap PROVISION next to a Light device and tap Continue at the top right.
3. In the Device Configuration view, tap Group and then select Demo group.
4. In the Device Configuration view, tap Functionality and then select a functionality for the node. The Firmware Update Server

functionality required for the firmware update is invisible but is automatically bound to the selected functionality.
5. Repeat above steps for all Target nodes.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Demonstration

silabs.com | Building a more connected world. Rev. 0.5 | 17

3. Go to the Networks view and tap Demo network. Make sure the Distributor node has the active proxy connection.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Demonstration

silabs.com | Building a more connected world. Rev. 0.5 | 18

4. Tap Firmware distribution under the Distributor node and then tap Firmware File.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Demonstration

silabs.com | Building a more connected world. Rev. 0.5 | 19

5. Choose an update image.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Demonstration

silabs.com | Building a more connected world. Rev. 0.5 | 20

6. In the Firmware distribution view, select the nodes to update firmware, and then tap Upload to nodes.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Demonstration

silabs.com | Building a more connected world. Rev. 0.5 | 21

7. The mobile app as the Initiator uploads the update image to the Distributor node and shows the progress. When the progress reaches
100%, tap Done.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Demonstration

silabs.com | Building a more connected world. Rev. 0.5 | 22

8. The Distributor node then distributes the update image simultaneously to the selected nodes. The mobile app updates the distribution
progress periodically.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Demonstration

silabs.com | Building a more connected world. Rev. 0.5 | 23

9. When the distribution is done, the Target nodes verify the update image.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Demonstration

silabs.com | Building a more connected world. Rev. 0.5 | 24

10. The Distributor node then instructs the nodes that have successfully verified the update image to apply the update image.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update Demonstration

silabs.com | Building a more connected world. Rev. 0.5 | 25

11. Finally, the mobile app shows update results.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update with Stand-alone Updater

silabs.com | Building a more connected world. Rev. 0.5 | 26

5 Firmware Update with Stand-alone Updater

The Silicon Labs Bluetooth Mesh mobile app has the Stand-alone Updater feature that manages the delivery of the firmware image to
Target nodes without an intermediary Distributor. To use the feature to perform a firmware update, you should have the node whose
firmware is to be updated provisioned to a mesh network.

Refer to Step 2 in Section 4 Firmware Update Demonstration for provisioning and configuring a light node, and then follow the steps
below to update the device’s firmware directly.
1. Go to the Networks view, tap Demo network, and select the light node.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update with Stand-alone Updater

silabs.com | Building a more connected world. Rev. 0.5 | 27

2. Tap Firmware Update in the Configuration view.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Firmware Update with Stand-alone Updater

silabs.com | Building a more connected world. Rev. 0.5 | 28

3. Tap Pick a file and choose an update image, and then tap Upload and apply.

 AN1370: Bluetooth Mesh Device Firmware Update Example Walkthrough
 Appendix – Silicon Labs Product Positioning for Bluetooth Mesh DFU

silabs.com | Building a more connected world. Rev. 0.5 | 29

6 Appendix – Silicon Labs Product Positioning for Bluetooth Mesh DFU

Bluetooth Mesh DFU requires significant space in flash memory to store firmware images. The table below suggests suitable roles for
Silicon Labs parts.

Part (Flash, RAM) Distributor Target Node
xG1
256kB, 32kB No No
xG12
512kB, 64kB No No (External Flash: Yes)
1MB, 256kB Yes Yes
xG13
512kB, 64kB No No (External Flash: Yes)
xG21
512kB, 96kB No No (External Flash: Yes)
768kB, 96kB No (External Flash: Yes) Yes
1MB, 96kB Yes Yes
xG22
352kB, 32kB No No
512kB, 32kB No No (External Flash: Yes)
xG24
1536kB, 256kB Yes Yes

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1 Introduction
	1.1 Requirements

	2 Bootloader Configurations for Firmware Updates
	2.1 Internal Flash Size
	2.2 Compressed Update Image
	2.3 External Flash

	3 Firmware Update Examples and Models
	3.1 Distributor Example Application
	3.2 Target Node Applications
	3.3 DFU Model Configurations
	3.3.1 Firmware Distribution Server
	3.3.2 Firmware Update Server
	3.3.3 BLOB Transfer Client
	3.3.4 BLOB Transfer Server

	3.4 Creating the Update Image Archive

	4 Firmware Update Demonstration
	5 Firmware Update with Stand-alone Updater
	6 Appendix – Silicon Labs Product Positioning for Bluetooth Mesh DFU

