
 

 

silabs.com | Building a more connected world. Copyright © 2023 by Silicon Laboratories Rev. 0.2 

AN1371: Bluetooth® Mesh NCP Host 
Provisioner Example Walkthrough 

The NCP Host Provisioner example demonstrates how to run a 
provisioner on a computer with a NCP node connected. The user 
can provision, configure, and reset other nodes through the NCP 
node. The Bluetooth mesh network is created and handled by 
the NCP node and therefore network management options are 
also available. 

 

 

 
  

KEY POINTS 

• Short introduction to Bluetooth mesh 
• Using the NCP Empty example applica-

tion 
• Using the NCP host provisioner example 

application 



  AN1371: Bluetooth Mesh NCP Host Provisioner Example Walkthrough 
 Introduction 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 2 

1 Introduction 

This document explains the Bluetooth mesh NCP host provisioner example, installed as part of the Bluetooth Mesh SDK. Most of the 
documentation focuses on the example application and its usage flow. This document also introduces some concepts of the specification 
that are important for understanding the example. 

The following subsections briefly describe the relevant aspects of the Bluetooth mesh technology. Section 2 Getting Started with the NCP 
Host Provisioner Example describes the setup to run the example, and Section 3 Running the NCP Host Provisioner Example describes 
the features of the example. 

1.1 Bluetooth Mesh Nodes and Features 

A Bluetooth mesh network can consist of different types of nodes where not all nodes need to be equal. Some nodes relay messages 
while others do not, and some nodes can be battery operated low power nodes. This section provides a short overview of the different 
features Bluetooth mesh nodes can implement. First, all Bluetooth mesh nodes can receive and send messages, and all Bluetooth mesh 
nodes must implement the Bluetooth mesh security and the essential mesh models needed for configuration. The rest of the node func-
tionality is optional. 

 

Figure 1-1: A Bluetooth Mesh Network 

Relay Feature 

Nodes with the relay feature are capable of relaying messages from other nodes and are essential in increasing the scale and range of 
a Bluetooth mesh network. 

Proxy Feature 

A proxy node acts as a proxy between the Bluetooth mesh nodes and network, and a device that only implements the GATT bearer, such 
as smart phones today. This means proxy nodes must implement both Bluetooth LE and Bluetooth mesh stacks and are the only nodes 
in the mesh network that must do this. 

Low Power Feature 

Nodes with the low power feature can spend most of their lifetime in a low power sleep mode and only need to wake up and participate 
in the Bluetooth mesh network communications once every four (4) days, which means their duty cycle can be almost zero. Nodes with 
the low power feature, however, need a node with a friend feature, which caches any messages targeted to the low power nodes while 
they are sleeping. When low power nodes are provisioned to the mesh network, they search for a nearby friend, agree on a communication 
interval with the friend when they will poll for messages, and after that they can go to sleep. 

Friend Feature 

Nodes with the friend feature must implement an additional message cache they use to cache messages for the nodes with the low power 
feature and store them until low power nodes wake up and fetch the messages. Nodes with the friend feature can also acknowledge 
messages on behalf of low power nodes, while they are sleeping. Nodes with friend features also advertise their capabilities using special 
beacons, so low power nodes can select the most optimal friends to associate with. The table below summarizes the Bluetooth mesh 
node features, but it is possible to combine features, so a node can have multiple features like Relay, Proxy, and Friend features. 



  AN1371: Bluetooth Mesh NCP Host Provisioner Example Walkthrough 
 Introduction 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 3 

Table 1.1. Bluetooth Mesh Node Feature Comparison 

  Relay Proxy Low Power Friend 
Send Messages Yes Yes Yes Yes 
Receive Messages Yes Yes Yes Yes 
Relay Messages Yes Yes No Yes 
GATT bearer Yes/No Yes Yes/No Yes/No 
Battery operated Typically no Typically no Yes Typically no 

1.2 Provisioning, Configuration, and Node Lifecycle 

The lifecycle of a Bluetooth mesh node starts as an unprovisioned device, meaning it has not been added as part of any mesh network, 
nor has it been configured to operate in a network. The process of adding such a device as part of a Bluetooth mesh network is called 
provisioning and can be done, for example, using a smart phone application or during production time when devices are manufactured 
and firmware gets installed. An unprovisioned Bluetooth mesh device may send Bluetooth LE advertisement packets, which announce 
that it supports the GATT provisioning service. The GATT provisioning service allows a Bluetooth LE device with provisioning capabilities 
to establish a connection to the unprovisioned device and start the provisioning process. 

Alternatively, the unprovisioned mesh device can start sending unprovisioned mesh beacons allowing another Bluetooth mesh node with 
provisioning capabilities to provision it over the mesh bearer. In the Bluetooth Mesh 1.0 specification, the provisioning can only be done 
over a single hop, but a future version of the specification may allow devices to be provisioned over multiple hops making this feature 
much more versatile. The Bluetooth mesh device provisioning is a secure process in which the provisioner typically performs the following 
actions: 
• The provisioner assigns the device a network key used for authenticating and encrypting the mesh communications. The key is 

transferred to the device being provisioned in an encrypted format. 
• The provisioner assigns a unicast address for each individual element the device has. The unicast address is unique in the mesh 

network. The address of the device is usually the address of its primary element. 
• During the process, device-specific keys are also generated both at the device and the provisioner, and they are used for any future 

device management or configuration operations. The device-specific keys are never sent over the air. They are generated and stored 
locally. Once the above steps have been made, an unprovisioned Bluetooth mesh device becomes a mesh node. 

 
Figure 1-2: Lifecycle of a Bluetooth Mesh Node 

The typical next step after device provisioning is device configuration. This again can be done by the provisioner, such as a smart phone 
application. To ensure that the mesh node is operational in a Bluetooth mesh network, the following steps are typically needed: 
• The Device Composition Data (DCD) is read from the mesh node. The DCD contains the models supported by the device, the man-

ufacturer information, and information on which features (proxy, relay etc.) are supported by the node. 
• Depending on the node capabilities, certain node features (proxy, relay etc.) can be enabled or disabled. 
• The network settings, such as addresses and time-to-live counter values, are configured. 
• One or more application keys are generated and assigned to the node depending on the applications the node needs to support. 
• The publish and subscribe configuration is defined indicating to which groups the node sends messages to and which group messages 

it listens to. 



  AN1371: Bluetooth Mesh NCP Host Provisioner Example Walkthrough 
 Introduction 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 4 

The configuration of a node can be changed any time during its lifetime. 

A Bluetooth mesh node may need to be removed from a Bluetooth mesh network at some point, for example, when a broken device is 
replaced or a device gets stolen. Bluetooth mesh network management operations provide two ways of removing a Bluetooth mesh node 
from the network: 
1. A node can be informed that it will be removed from the network, so it can behave accordingly, but this operation should not be used 

as an only node removal process. Instead, the node removal from the list operation described below should be done to securely 
remove a node from a network. 

2. A key refresh operation can be performed in the whole network meaning every other node in the network is assigned with new network 
and application keys except the node to be removed. This operation is a heavier process but guarantees the node to be removed is 
removed from the network. 

 
 
 



  AN1371: Bluetooth Mesh NCP Host Provisioner Example Walkthrough 
 Getting Started with the NCP Host Provisioner Example 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 5 

2 Getting Started with the NCP Host Provisioner Example 

The NCP host provisioner example consists of two components: NCP target and host applications. The NCP target application runs on a 
Silicon Labs device and the host application runs on a MacOS, Linux, or Windows system with the Silicon Labs device connected. One 
or more additional Silicon Labs devices running Bluetooth mesh applications are needed so you can use the host provisioner to add these 
devices to a mesh network and to manage these devices. 

2.1 Requirements 

The following is required to run the example. 
• At least two mainboards with a supported board installed, one used for the target application of the NCP host provisioner and the 

other(s) for Bluetooth mesh example application(s) to be provisioned. 
• Simplicity Studio 5 
• Bluetooth Mesh SDK 2.2.0 or later, distributed through Simplicity Studio 5. The prebuilt demos and examples are included in the 

SDK. 
• A Mac or Linux computer or MSYS2 on a Windows computer with GCC toolchain installed. 

2.2 Bluetooth Mesh – NCP Empty Application 

The Bluetooth Mesh – NCP Empty example application is the target application running on a Silicon Labs device. The application is 
provided as a prebuilt demo binary image, ready to download and use, and a corresponding example project that you can modify and 
then build for the target part. If you want to build your own projects based on the example project, see QSG176: Silicon Labs Bluetooth® 
Mesh SDK v2.x Quick-Start Guide. This section describes how to install the prebuilt demo binary to the device. 

The precompiled demos are only available for a limited set of parts, including selected EFR32xG13 and xG21 parts and BGM13 and 
MGM21 modules. The examples can be built for any part supported by the Bluetooth Mesh SDK. 

Note: EFR32xG22 parts can run the Bluetooth Mesh – NCP Empty example but do not support provisioner functionality. 

1. Open Simplicity Studio 5 with a compatible SoC wireless kit connected to the computer. 
2. Select the part in Debug Adapters view to open the Launcher perspective. 
3. Click the Example Projects & Demos tab. 
4. To see only the demos, turn off the Example Projects. 
5. Under Technology Type, filter on Bluetooth Mesh. Next to Bluetooth Mesh – NCP Empty, click RUN. 

https://www.silabs.com/products/development-tools/software/simplicity-studio
https://www.silabs.com/documents/public/quick-start-guides/qsg176-bluetooth-mesh-sdk-v2x-quick-start-guide.pdf
https://www.silabs.com/documents/public/quick-start-guides/qsg176-bluetooth-mesh-sdk-v2x-quick-start-guide.pdf


  AN1371: Bluetooth Mesh NCP Host Provisioner Example Walkthrough 
 Getting Started with the NCP Host Provisioner Example 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 6 

 

2.3 Bluetooth Mesh NCP Host Provisioner Application 

The Bluetooth mesh NCP host provisioner application is the host application running on a computer. A Silicon Labs device running the 
Bluetooth Mesh – NCP Empty example application is connected to the computer over a USB simulated serial port. 

The application source code can be found in the path app/btmesh/example_host/btmesh_host_provisioner of Gecko SDK Suite. To build 
the application, open a terminal, change the directory to the above directory and run make. The executable will be generated in the exe 
directory. To delete the executable and intermediate files, run make clean. If you need to modify SDK files, you can run make 
export to copy all source and header files to the export directory, or make export <export_dir> to copy all source and header 
files to a specified directory, and then modify the files in the exported directory. 

If you develop your own project based on the application or build the application somewhere other than the default path, you need to 
specify the GSDK path to the variable SDK_DIR in the ‘makefile’ file. 

2.4 Bluetooth Mesh Example Applications 

To use the host provisioner to perform the provisioning and configuration process, you need to have one or more Bluetooth mesh devices 
running to be added to a mesh network. In this example, we use two Silicon Labs devices to run Sensor Server and Sensor Client example 
applications. 

The precompiled demos are only available for a limited set of parts, including selected EFR32xG13 and xG21 parts and BGM13 and 
MGM21 modules. The examples can be built for any part supported by the Bluetooth Mesh SDK. 

Open Simplicity Studio 5 with a compatible SoC wireless kit connected to the computer. Select the part in Debug Adapters view to open 
the Launcher perspective. 
1. Click the Example Projects & Demos tab. 
2. To see only the demos, turn off the Example Projects. 
3. Under Technology Type, filter on Bluetooth Mesh. 
4. Next to either Bluetooth Mesh – SoC Sensor Client or to Bluetooth Mesh – SoC Sensor Server, click RUN. 
5. Connect your other device and repeat with the other application. 



  AN1371: Bluetooth Mesh NCP Host Provisioner Example Walkthrough 
 Getting Started with the NCP Host Provisioner Example 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 7 

 
  



  AN1371: Bluetooth Mesh NCP Host Provisioner Example Walkthrough 
 Running the NCP Host Provisioner Example 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 8 

3 Running the NCP Host Provisioner Example 

This section assumes you have installed the Bluetooth Mesh – NCP Empty demo binary to one of the devices, the Bluetooth Mesh – 
SoC Sensor Client to another, and the Bluetooth Mesh – SoC Sensor Server to the other, and have built the NCP host provisioner 
application. 

3.1 Launching NCP Host Provisioner 

Connect the SoC wireless kit running the Bluetooth Mesh – NCP Empty application to the computer. Open a terminal on Mac/Linux or 
a MSYS2 terminal on Windows and change the directory to the application directory. Check what serial port is assigned for the SoC 
wireless kit and run ./exe/btmesh_host_provisioner[.exe] -u <serial_port> [host provisioner com-
mands]. If the computer and the SoC wireless kit are connected to the same TCP/IP network, you can find its IP address on the LCD of 
the SoC wireless kit and run ./exe/btmesh_host_provisioner[.exe] -t <tcp_address> [host provisioner 
commands]. 

The application supports the command line options described below. You can run./exe/btmesh_host_provisioner[.exe] 
-h to see the usage. 
 
NCP Host Commands: 

Command Description 
-t <tcp_address> TCP/IP connection option. <tcp_address> is the TCP/IP address of the dev board. 
-u <serial_port> UART serial connection option. <serial_port> is the serial port assigned to the dev board by the 

host system. (COM# on Windows, /dev/tty# on POSIX) 
-b <baud_rate> Baud rate of the serial connection. <baud_rate> is the baud rate, default: 115200 
-f Disable flow control (RTS/CTS), default: enabled 
-h Print this help message 

 
Host Provisioner Commands: 

Command Description 
-i or --nodeinfo <UUID> Print DCD information about a node in the network. <UUID> is the unique identifier of the node. 
-l or --nodelist List all nodes present in the provisioner's device database (DDB) 
-p or --provision <UUID> Provision a node. <UUID> is the UUID of the node to be provisioned. Can be acquired by --scan. 
-r or --remove <UUID> Remove the given node from the mesh network. <UUID> is the UUID of the node to be removed. 
-k or --key-refresh 
<timeout> 

Refresh the network key and app key. <timeout> is the phase timeout in seconds 

-x or --key-export 
<filename> 

Export the network, app, and device keys in JSON. <filename> is the output file name 

-e or --reset Factory reset the provisioner. Note: This command does not remove existing devices from the 
network. 

-s or --scan Scan and list unprovisioned beaconing nodes. 
UUID shall be a string containing 16 separate octets, e.g. "00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff" 
The separator can be any character, but in case of a whitespace character this example requires quotation marks around the string. 

 

If the application doesn’t respond, you may need to disable flow control by using the -f option. If the option does not help, please disable 
it in the WSTK console. Open Simplicity Studio 5, right-click on the part in Debug Adapters view, and select Launch Console. 
 



  AN1371: Bluetooth Mesh NCP Host Provisioner Example Walkthrough 
 Running the NCP Host Provisioner Example 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 9 

 

Click the Admin tab in the right panel and type the command serial vcom config handshake disable. 

 

The Host Provisioner example has two modes: CLI and UI. 
• CLI mode 

• The CLI mode is one command per run. 
• The host database is not preserved between runs, but node identifiers (for example, UUID) remain the same provided the affected 

node has not been reset in the meantime. This means that a UUID found in a scanning session can be used in a provisioning 
session. 

• UI mode 
• The UI mode is accessible by starting the program without any host provisioner commands, for example, btmesh_host_pro-

visioner.exe -u COM5 or btmesh_host_provisioner -u /dev/tty<X>. 
• The user can choose from several commands in one session without exiting. In this case, the host example's database stores 

information about the nodes in the Bluetooth mesh network and those found during scanning. 



  AN1371: Bluetooth Mesh NCP Host Provisioner Example Walkthrough 
 Running the NCP Host Provisioner Example 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 10 

• This database is updated while the program is running, but it is not guaranteed that it will be the same in the next run. 
• On Windows using MSYS2, winpty may be required for user input handling, e.g. winpty exe/btmesh_host_provi-

sioner.exe -u COM5. If you haven't installed the winpty package, run pacman -S winpty to install the package in a 
MSYS2 terminal. 

3.2 Resetting the provisioner 

Run the NCP host provisioner with the -e or --reset argument or input e in the UI mode to reset the NCP node. 

3.3 Scanning unprovisioned nodes 

Run the NCP host provisioner with the -s or --scan argument or input s in the UI mode to scan the nodes that are transmitting 
unprovisioned beacons. 

 

% ./exe/btmesh_host_provisioner -u /dev/tty.usbmodem0004402253201 -e 
[I] Factory reset 
[I] Empty NCP-host initialised. 
[I] Resetting NCP... 
[I] Bluetooth stack booted: v5.1.2-b215 
[I] Provisioner init 
[I] Network initialized 
[I] Networks: 0 
[I] Address : 0 
[I] IV Index: 0 
[I] Initiating node reset 
[I] Resetting hardware 

% ./exe/btmesh_host_provisioner -u /dev/tty.usbmodem0004402253201 -s 
[I] Scan 
[I] Empty NCP-host initialised. 
[I] Resetting NCP... 
[I] Bluetooth stack booted: v5.1.2-b215 
[I] Provisioner init 
[I] Network initialized 
[I] Networks: 0 
[I] Address : 0 
[I] IV Index: 0 
[I] Scanning started 
 
[I] Unprovisioned node 
[I] ID:      0 
[I] UUID:    fa e1 09 0e 2c 78 60 53 bf 90 1c 91 22 a1 5d bc 
[I] OOB Capabilities: 0x0000 
 
[I] Unprovisioned node 
[I] ID:      1 
[I] UUID:    52 58 b4 a4 03 a5 45 57 87 e2 dc 14 2e a0 c5 46 
[I] OOB Capabilities: 0x0000 
 
[I] Scanning stopped 



  AN1371: Bluetooth Mesh NCP Host Provisioner Example Walkthrough 
 Running the NCP Host Provisioner Example 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 11 

3.4 Provisioning and configuring a node 

To provision and configure a device, run the NCP host provisioner with the -p or --provision argument followed the UUID of the 
device, or input p in the UI mode and then select the device with its ID or UUID. Repeat the command until all devices are provisioned. 
Note that a scan is required prior to running the command in the UI mode. See section 3.3 Scanning unprovisioned nodes. 

3.5 Listing all nodes 

Run the NCP host provisioner with the -l or --nodelist argument or input l in the UI mode to list all nodes that have been 
provisioned and configured. 

 

% ./exe/btmesh_host_provisioner -u /dev/tty.usbmodem0004402253201 -p "54 16 d3 83 64 c3 21 54 84 87 6a e4 9b 76 08 
b2" 
[I] Empty NCP-host initialised. 
[I] Resetting NCP... 
[I] Bluetooth stack booted: v5.1.2-b215 
[I] Provisioner init 
[I] Network initialized 
[I] Networks: 0 
[I] Address : 0 
[I] IV Index: 0 
[I] Starting provisioning session 
 
[I] Device provisioned 
[I] UUID:    54 16 d3 83 64 c3 21 54 84 87 6a e4 9b 76 08 b2 
[I] Address: 0x2005 
 
Configuration of node (netkey_idx=0,addr=0x2005) is started. 
... 
DCD query of node (netkey_idx=0,addr=0x2005) completed. 
Node (netkey_idx=0,addr=0x2005) runs btmesh_soc_switch example. 
... 
Configuration of node (netkey_idx=0,addr=0x2005) is successful. 
 
[I] Provisioning session finished 
 

% ./exe/btmesh_host_provisioner -u /dev/tty.usbmodem0004402253201 -l 
[I] Nodelist 
[I] Empty NCP-host initialised. 
[I] Resetting NCP... 
[I] Bluetooth stack booted: v5.1.2-b215 
[I] Provisioner init 
[I] Network initialized 
[I] Networks: 1 
[I] Address : 2001 
[I] IV Index: 0 
[I] Querying DDB list 
 
[I] Address: 0x2005 
[I] Element count: 1 
[I] UUID:    54 16 d3 83 64 c3 21 54 84 87 6a e4 9b 76 08 b2 



  AN1371: Bluetooth Mesh NCP Host Provisioner Example Walkthrough 
 Running the NCP Host Provisioner Example 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 12 

3.6 Displaying DCD information 

To display the DCD information of a node, run the NCP host provisioner with the -i or --nodeinfo argument followed by the UUID 
of the node, or input i in the UI mode and then select the node with its ID, UUID, or Address. 

 

% ./exe/btmesh_host_provisioner -u /dev/tty.usbmodem0004402253201 -i "54 16 d3 83 64 c3 21 54 84 87 6a e4 9b 76 08 
b2" 
[I] Nodeinfo: 54 16 d3 83 64 c3 21 54 84 87 6a e4 9b 76 08 b2 
[I] Empty NCP-host initialised. 
[I] Resetting NCP... 
[W] Failed to add node to network in database! 
[I] Bluetooth stack booted: v5.1.2-b215 
[I] Provisioner init 
[I] Network initialized 
[I] Networks: 1 
[I] Address : 2001 
[I] IV Index: 0 
[I] Querying node information 
 
[I] Task DCD get (page=0) request to node (netkey_idx=0,addr=0x2005,handle=0x00000001) is sent. 
[W] Task DCD get (page=0) request (retry) to node (netkey_idx=0,addr=0x2005,handle=0x00000002) is sent. 
[I] Node (netkey_idx=0,addr=0x2005) DCD company id: 0x02ff 
[I] Node (netkey_idx=0,addr=0x2005) DCD product id: 0x0006 
[I] Node (netkey_idx=0,addr=0x2005) DCD version id: 0x0421 
[I] Node (netkey_idx=0,addr=0x2005) DCD min replay prot list length: 32 
[I] Node (netkey_idx=0,addr=0x2005) DCD feature relay:  1 
[I] Node (netkey_idx=0,addr=0x2005) DCD feature proxy:  1 
[I] Node (netkey_idx=0,addr=0x2005) DCD feature friend: 0 
[I] Node (netkey_idx=0,addr=0x2005) DCD feature lpn:    1 
[I] Node (netkey_idx=0,addr=0x2005) DCD element index 0 with location 0x0000 (sig_models=8,vendor_models=0) 
[I] Node (netkey_idx=0,addr=0x2005) DCD SIG model 0x0000-Configuration Server (elem=0) 
[I] Node (netkey_idx=0,addr=0x2005) DCD SIG model 0x0002-Health Server (elem=0) 
[I] Node (netkey_idx=0,addr=0x2005) DCD SIG model 0x1001-Generic OnOff Client (elem=0) 
[I] Node (netkey_idx=0,addr=0x2005) DCD SIG model 0x1302-Light Lightness Client (elem=0) 
[I] Node (netkey_idx=0,addr=0x2005) DCD SIG model 0x1205-Scene Client (elem=0) 
[I] Node (netkey_idx=0,addr=0x2005) DCD SIG model 0x1402-UnknownSigModel (elem=0) 
[I] Node (netkey_idx=0,addr=0x2005) DCD SIG model 0x1305-Light CTL Client (elem=0) 
[I] Node (netkey_idx=0,addr=0x2005) DCD SIG model 0x1400-UnknownSigModel (elem=0) 
[I] Task DCD get (page=0) of node (netkey_idx=0,addr=0x2005,handle=0x00000002) is completed successfully. 
Node 0x2005 information: 
Company id: 0x02ff-Silicon Labs 
Product id: 0x0006-btmesh_soc_switch 
Version id: 0x0421 
Min replay prot list length: 32 
Features: 
  -Relay:  1 
  -Proxy:  1 
  -Friend: 0 
  -LPN:    1 
Elements: (count=1) 
  -Element 0: 
    -Address: 0x2005 
    -Location: 0 
    -Models: (count=8) 
      -SIG model: 0x0000-Configuration Server 
      -SIG model: 0x0002-Health Server 
      -SIG model: 0x1001-Generic OnOff Client 
      -SIG model: 0x1302-Light Lightness Client 
      -SIG model: 0x1205-Scene Client 
      -SIG model: 0x1402-UnknownSigModel 
      -SIG model: 0x1305-Light CTL Client 
      -SIG model: 0x1400-UnknownSigModel 



  AN1371: Bluetooth Mesh NCP Host Provisioner Example Walkthrough 
 Running the NCP Host Provisioner Example 

 

silabs.com | Building a more connected world.  Rev. 0.2  | 13 

3.7 Removing a node 

To remove a node from the mesh network, run the NCP host provisioner with the -r or --remove argument followed by the UUID 
of the node, or input r in the UI mode and then select the node with its ID, UUID, or Address. 

3.8 Refreshing the keys 

To refresh the network and app keys, run the NCP host provisioner with the -k or –-key-refresh argument followed by the 
timeout of the command, or input k in the UI mode (timeout defaults to the stack’s value or to the previously set). 

3.9 Exporting the keys 

To export the network, app and device keys, run the NCP host provisioner with the -x or –-key-export argument followed by the 
desired filename, or input x in the UI mode (filename defaults to BtMeshKeys.json). 

 

% ./exe/btmesh_host_provisioner -u /dev/tty.usbmodem0004402253201 -r "54 16 d3 83 64 c3 21 54 84 87 6a e4 9b 76 08 
b2" 
[I] Remove: 54 16 d3 83 64 c3 21 54 84 87 6a e4 9b 76 08 b2 
[I] Empty NCP-host initialised. 
[I] Resetting NCP... 
[I] Bluetooth stack booted: v5.1.2-b215 
[I] Provisioner init 
[I] Network initialized 
[I] Networks: 1 
[I] Address : 2001 
[I] IV Index: 0 
[I] Unprovisioning... 
[I] Task node reset request to node (netkey_idx=0,addr=0x2005,handle=0x00000001) is sent. 
[W] Task node reset request (retry) to node (netkey_idx=0,addr=0x2005,handle=0x00000002) is sent. 
[I] Task node reset of node (netkey_idx=0,addr=0x2005,handle=0x00000002) is completed successfully. 
[I] Node removed from network 
[I] Refresh keys to prevent trashcan attacks. 

% ./exe/btmesh_host_provisioner -u /dev/tty.usbmodem0004402253201 -k 30 
[I] Key refresh with phase timeout: 30 
[I] Empty NCP-host initialised. 
[I] Resetting NCP... 
[I] Bluetooth stack booted: v5.1.2-b215 
[I] Provisioner init 
[I] Network initialized 
[I] Networks: 1 
[I] Address : 2001 
[I] IV Index: 0 
[I] Key refresh started 
[I]   Phase 1 succeed: 54 16 d3 83 64 c3 21 54 84 87 6a e4 9b 76 08 b2 
[I] Key refresh phase 1 
[I]   Phase 2 succeed: 54 16 d3 83 64 c3 21 54 84 87 6a e4 9b 76 08 b2 
[I] Key refresh phase 2 
[I]   Phase 0 succeed: 54 16 d3 83 64 c3 21 54 84 87 6a e4 9b 76 08 b2 
[I] Key refresh succeed 

% ./exe/btmesh_host_provisioner -u /dev/tty.usbmodem0004402253201 -x ./keys.json 
[I] Export keys to: ./keys.json 
[I] Empty NCP-host initialised. 
[I] Resetting NCP... 
[I] Bluetooth stack booted: v5.1.2-b215 
[I] Provisioner init 
[I] Network initialized 
[I] Networks: 1 
[I] Address : 2001 
[I] IV Index: 0 



Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless 
tools, documentation, software, 
source code libraries & more. Available 
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each 
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon 
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the 
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or 
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or 
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent 
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in 
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used 
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims 
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.  
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more 
information, visit  www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy 
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®, 
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others 
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered 
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.


	1 Introduction
	1.1 Bluetooth Mesh Nodes and Features
	1.2 Provisioning, Configuration, and Node Lifecycle

	2 Getting Started with the NCP Host Provisioner Example
	2.1 Requirements
	2.2 Bluetooth Mesh – NCP Empty Application
	2.3 Bluetooth Mesh NCP Host Provisioner Application
	2.4 Bluetooth Mesh Example Applications

	3 Running the NCP Host Provisioner Example
	3.1 Launching NCP Host Provisioner
	3.2 Resetting the provisioner
	3.3 Scanning unprovisioned nodes
	3.4 Provisioning and configuring a node
	3.5 Listing all nodes
	3.6 Displaying DCD information
	3.7 Removing a node
	3.8 Refreshing the keys
	3.9 Exporting the keys


