
AN1398: EFR32 Coulomb Counting

This application note describes the configuration, calibration, and
operation of the Coulomb Counter on the EFR32 Series 2 devi-
ces. The integrated Coulomb Counter can losslessly measure the
charge drawn from the DC-DC of the selected EFR32 device. A
software example demonstrating the coulomb counting feature is
included in the Gecko SDK

KEY POINTS

• Ability to losslessly measure charge drawn
from EFR32 DC-DC.

• Internally integrated calibration registers
for accurate calibration.

• Example C-code provided in Gecko SDK

silabs.com | Building a more connected world. Copyright © 2023 by Silicon Laboratories Rev. 0.1 



1.  Device Compatibility

This application note supports devices in the EFR32 Wireless SoC product family which contain DC-DC and coulomb counting hard-
ware.

Supported devices include:
• EFR32BG27
• EFR32MG27

AN1398: EFR32 Coulomb Counting
Device Compatibility

silabs.com | Building a more connected world. Rev. 0.1  |  2



2.  Coulomb Counter

The DC-DC on selected EFR32 devices includes two 32-bit counters that are used to measure the charge delivered by the DC-DC. The
Coulomb Counter circuit counts the number of charge pulses delivered by the DC-DC. Software can determine the charge-per-pulse
(CPP) using on-chip resources, and keep track of the total charge delivered. Separate counters are used to measure pulses delivered
in EM0/1 and EM2/3. Each counter provides threshold and overflow interrupts to minimize system software overhead. Measured on-
chip loads are available for periodic recalibration.

2.1  Startup

The Coulomb Counter hardware is disabled following any power-on-reset, but will remain active through any other reset source.

Software should begin by configuring the counter thresholds EM0CNT and EM2CNT in DCDC_CCTHR while the counter is still disa-
bled. These 16-bit thresholds are compared against the 16 MSBs of the respective EM0/1 and EM2/3 counters, and can be used to
establish a service interval for the Coulomb Counter hardware. When the 16 MSBs of a counter exceed the programmed threshold, the
EM0CMPIF or EM2CMPIF interrupt flag in DCDC_CCIF will be set and an interrupt may optionally be generated. As a guideline, using
the default DC-DC settings, the DC-DC may produce up to 60,000-70,000 pulses per second for every mA of load current. Therefore,
using a threshold value of 0x00001 in the DCDC_CCTHR.EM0CNT register will cause an interrupt after roughly 1 mC of charge has
been delivered in EM0 and EM1.

After the thresholds have been programmed to the desired service intervals, the counters should be enabled by writing 1 to
DCDC_CCCMD.START. The thresholds cannot be changed while the Coulomb Counter is running, and it must be halted using the
DCDC_CCMD.STOP command if it is required to change thresholds.

Once the counter is running, software can perform an initial calibration to more precisely measure the charge-per-pulse delivered by the
DC-DC in EM0/1 and EM2/3 (CPPEM01 and CPPEM23) See 2.2 Calibration for more detail. The CPP values may be stored in nonvolatile
memory to withstand any device resets and keep track of the energy usage. Periodic re-calibration may also be performed with the
counter running.

AN1398: EFR32 Coulomb Counting
Coulomb Counter

silabs.com | Building a more connected world. Rev. 0.1  |  3



2.2  Calibration

The coulomb counter should be calibrated to determine the charge per pulse, both for EM0/1 and for EM2/3 settings of the DC-DC. The
charge per pulse is measured using known on-chip calibration loads, a PRS channel, and the CMU RC oscillator calibration circuitry. A
high-frequency oscillator source of known frequency (fHF) is used to time pulses from the DC-DC and establish the charge per pulse. To
cancel out any system current, two loads of different magnitude are used in the calibration procedure as follows:

1. Enable a larger calibration load (iload_lg) and measure the number of high-frequency clocks (Nlg) to capture a known number of
pulses (Ncal)

2. Enable a smaller calibration load (iload_sm) and measure the number of high-frequency clocks (Nsm) to capture a known number of
pulses (Ncal)

3. Calculate charge-per-pulse (CPP) using Figure 2.1 Charge-Per-Pulse (CPP) Calculation on page 4

CPP = [(Nlg * Nsm) / (fHF * Ncal)] * [(iload_lg - iload_sm) / (Nsm - Nlg)]

Figure 2.1.  Charge-Per-Pulse (CPP) Calculation

CPP should be calculated separately for the DC-DC EM0/1 and EM2/3 settings because these use different inductor peak current and
timing parameters. Although the calibration must be performed in EM0, the DC-DC EM2/3 settings can be applied temporarily by setting
the CCCALEM2 bit in DCDC_CCCALCTRL. CCCALEM2 must be cleared by software once the EM2/3 calibration is complete. Note
that while the EM2/3 peak current settings are temporarily applied to the DC-DC converter, the maximum output current of the DC-DC
will be extremely limited, and cannot support high current events (such as a radio transmission). For this reason, it is recommended to
schedule EM2/3 calibration before EM2/3 entry, after all radio RX/TX communications.

The highest accuracy for the CPP measurement will be achieved by using the most accurate reference clock source available (general-
ly HFXO), and taking measurements long enough to ensure timing precision. Both measurements should be taken while the system
load is stable. If the system current is significantly different between the two measurements, it will impact the calibration accuracy. It is
recommended to perform calibrations when the radio is not acive, and remain in a software polling loop or use the WFI instruction to
wait for a CMU calibration complete interrupt.

The coulomb counter provides a software mechanism to halt calibration and identify unanticipated current events. The CCCALHALT bit
in DCDC_CCCALCTRL may be set by ISR code or by RAIL software to halt a calibration. Setting CCCALHALT will remove any EM2/3
override (i.e., the DC-DC converter will revert to its EM0/1 peak current setting) and disable the calibration load current. The CMU cali-
bration circuit will not stop, but software should read the CCCALHALT bit when calibration is complete (i.e., the CMU_IF.CALRDY IRQ
flag is set) to determine if the measurement has been compromised in this way.

The number of pulses to capture (Ncal) and total load current both impact the required calibration time. If the HFXO is used as the up
counter timing reference, Ncal = 2 for EM0/1 settings and Ncal = 8 for EM2/3 settings will generally provide sufficient timing precision for
most loads. If the total system current during calibration is known to be higher, Ncal can be increased. However, if Ncal is set too high
under light loads, the 20-bit calibration up counter may saturate during the measurement.

AN1398: EFR32 Coulomb Counting
Coulomb Counter

silabs.com | Building a more connected world. Rev. 0.1  |  4



2.2.1  Calibration Load

The EFR32 includes a programmable calibration load current with eight settings, ranging from 0.25 to 8 mA. The calibration load magni-
tude is controlled by the CCLVL field and enabled using the CCLOADEN bit in DCDC_CCCALCTRL. While calibrating the coloumb
counter, two different loads can be chosen to provide a known difference in the current and arrive at a more precise measurement.
Each calibration load setting is measured during production test and the values are written to flash in the DEVINFO space as a 16-bit
value with each LSB representing 200 nA. The stored value can be converted into uA by dividing by 5, or into mA by dividing by 5000.
The load settings and corresponding DEVINFO locations are shown in Table 2.1 Calibration Load Current Settings on page 5.

Table 2.1.  Calibration Load Current Settings

CCLVL Nominal Load (mA) DEVINFO Measurement Loca-
tion

Nominal CCLOADx value
(decimal)

LOAD0 0.25 CCLOAD10.CCLOAD0 1250

LOAD1 0.5 CCLOAD10.CCLOAD1 2500

LOAD2 1.0 CCLOAD32.CCLOAD2 5000

LOAD3 1.5 CCLOAD32.CCLOAD3 7500

LOAD4 2.0 CCLOAD54.CCLOAD4 10000

LOAD5 4.0 CCLOAD54.CCLOAD5 20000

LOAD6 6.0 CCLOAD76.CCLOAD6 30000

LOAD7 8.0 CCLOAD76.CCLOAD7 40000

Note: Calibration loads are applied at the DC-DC output, and the total load current during calibration will include all device current.
 

AN1398: EFR32 Coulomb Counting
Coulomb Counter

silabs.com | Building a more connected world. Rev. 0.1  |  5



2.2.2  Pulse Timing

EFR32 devices include 20-bit up/down counters in the CMU intended for precise measurement of RC oscillators, which are described in
the RC Oscillator Calibration section of the device reference manual. This circuit can be used to measure the time it takes for the DC-
DC to produce a specific number of pulses. To accomplish this, the DCDC MONO70NSANA signal can be routed via PRS to the
DOWN counter, and a precise clock source (HFXO for example) should be selected as the UP counter clock source. The DOWN coun-
ter is configured with a specified number of pulses to count using CALCTRL.CALTOP.

The steps for measuring pulse timing are as follows:

1. Configure an asynchronous PRS channel to route the DCDC MONO70NSANA producer to the CMU CALDN consumer
2. Configure the CMU calibration counter:

a. CMU_CALCTRL.DOWNSEL = PRS
b. CMU_CALCTRL.UPSEL = HFXO (recommended)
c. CMU_CALCTRL.CONT = 0
d. CMU_CALCTRL.CALTOP = number of DC-DC pulses to count (Ncal in the CPP equation)

3. Enable the desired calibration load:
a. DCDC_CCCALCTRL.CCLVL = desired calibration load (iload_lg or iload_sm in the CPP equation)
b. DCDC_CCCALCTRL.CALEN = 1

4. Wait for at least one DC-DC pulse to settle DC-DC:
a. Clear DCDC_IF.REGULATIONIF
b. Wait for DCDC_IF.REGULATIONIF == 1

5. Clear any pending calibration flag and start the measurement:
a. CMU_IF_CLR.CALRDY = 1
b. CMU_CALCMD.CALSTART = 1

6. Wait for the calibration to complete by polling CMU_IF.CALRDY, or using WFI with an ISR
7. Check for errors:

a. If DCDC_CCCALCTRL.CCCALHALT == 1, the calibration was halted, and should be re-tried
b. If CMU_CALCNT == 0xFFFFF, the specified number of DC-DC pulses was not seen before counter saturation

(CMU_CALCTRL.CALTOP is too large)
8. If there are no errors, store the CMU_CALCNT value. This represents the number of high-frequency clocks required (Nlg or Nsm in

the CPP equation)
9. Disable the calibration load by clearing DCDC_CCCALCTRL.CALEN = 0

2.3  Recalibration

Changes in external and internal conditions of the device can affect the accuracy of the previously determined charge-per-pulse (CPP).
For example, recalibration may be required to maintain an accurate CPP after the following events:
• Significant change in input supply voltage
• Significant change in temperature
• Change of output voltage
• Change of ouput peak current
• Change in DC-DC operating mode
• Change in energy mode (e.g. EM0 -> EM2)

The Coulomb Counter Driver will be able to report when events like change in DC-DC operating mode is detected by using the API

sl_coulomb_counter_output_mask_t sl_coulomb_counter_outputs_need_calibration (void)

The application can then perform recalibration to refine the Coulomb Counter result.

The IADC or ACMP also may be used to periodically monitor the supply voltage for changes, and the EMU temperature sensor is avail-
able to monitor changes in temperature.

AN1398: EFR32 Coulomb Counting
Coulomb Counter

silabs.com | Building a more connected world. Rev. 0.1  |  6



2.4  Servicing the Counters

The Coulomb Counter can be serviced infrequently, using either the built-in hardware charge thresholds and interrupt or a defined time
interval from an RTC or timer. When it is time to service the counter, the present values representing the number of pulses should be
read from DCDC_EM0CNT and DCDC_EM2CNT. Total charge delivered during this interval can be calculated as CPPEM01 *
DCDC_EM0CNT + CPPEM23 * DCDC_EM2CNT, and stored in nonvolatile memory. After the charge has been calculated, it is recom-
mended to clear the counters using the DCDC_CCCMD.CLR command.

AN1398: EFR32 Coulomb Counting
Coulomb Counter

silabs.com | Building a more connected world. Rev. 0.1  |  7



3.  Configuration using the Coulomb Counter Driver

With Simplicity Studio V5 and latest GSDK support, the user can configure the Coulomb Counter on EFR32 devices using the Coulomb
Counter Driver provided in the GSDK Suite. This driver provides APIs that allow user to easily configure the Coulomb Counter without
explicitly configuring the registers and worrying about specific details in the configuration. It is strongly recommended that users utilize
the driver to correctly configure the Coulomb Counter for optimized operation.

The Coulomb Counter APIs documentation can be found in Coulomb Counter API. The documentation also provides a typical Coulomb
Counter configuration routine.

The Coulomb Counter source code can be found in Coulomb Counter Source.

An out of the box software example demonstrating the Coulomb Counter on EFR32xG27 device is also provided within the GSDK. Sec-
tion 4. Software Example provides more details regarding this example.

AN1398: EFR32 Coulomb Counting
Configuration using the Coulomb Counter Driver

silabs.com | Building a more connected world. Rev. 0.1  |  8

https://docs.silabs.com/gecko-platform/4.2/driver/api/group-coulomb-counter
https://github.com/SiliconLabs/gecko_sdk/tree/gsdk_4.2/platform/driver/coulomb


4.  Software Example

Coulomb Counting with EFR32xG27

The GSDK Suite provides a software example that demonstrates the coulomb counting feature on the EFR32MG27 radio board
BRD4194A. This example uses the integrated Coulomb Counter to monitor charge and current consumption on the DC-DC. It will store
the information in the NVM3 region, and it will output results to VCOM console upon request from the CLI interface.

At the time of this application note authoring, the latest Simplicity Studio and GSDK version is:
• Simplicity Studio v5.6.3.1.
• Gecko SDK Suite v4.2.2.

This example is also available in Gecko SDK Suite v4.2.0+ and is expected to be available in future GSDK releases.

To run the example, you will also need a Wireless Starter Kit or Wireless Pro Kit + BRD4194A radio board.

The example name is Platform - Coulomb Counter DCDC Bare-metal, and can be found under the 32-bit MCU filter .

AN1398: EFR32 Coulomb Counting
Software Example

silabs.com | Building a more connected world. Rev. 0.1  |  9



To run the example:
• Create and import the project into your workspace.
• Build the project to generate the hex image.
• Flash the hex image to BRD4194A, or alternatively you can enter debug mode to flash the device as well.
• Open serial terminal using desired software, or alternatively you can use the console built into Simplicity Studio.
• Reset the device by pressing the reset button, and you can enter CLI commands via the serial terminal interface. The readme.md

file shows all the valid commands:
• coulomb_get: Return coulombs consumed since last boot.
• coulomb_calibrate: Calibrate coulomb counter.
• coulomb_get_total: Return coulombs consumed over device's lifetime.
• coulomb_update_total: Read coulomb counters and update total value.
• coulomb_reset_total: Reset total counter to zero.

AN1398: EFR32 Coulomb Counting
Software Example

silabs.com | Building a more connected world. Rev. 0.1  |  10



5.  Related Documents

• AN0002.2: EFM32 and EFR32 Wireless Gecko Series 2 Hardware Design Considerations
• AN0948.2: EFM32 and EFR32 Series 2 DC-to-DC Converter
• EFR32xG27 Reference Manual
• Coulomb Counter API for GSDK v4.2.2

AN1398: EFR32 Coulomb Counting
Related Documents

silabs.com | Building a more connected world. Rev. 0.1  |  11

https://www.silabs.com/documents/public/application-notes/an0002.2-efr32-efm32-series-2-hardware-design-considerations.pdf
https://www.silabs.com/documents/public/application-notes/an0948.2-efr32-series-2-power-configurations-and-dcdc.pdf
https://docs.silabs.com/gecko-platform/4.2/driver/api/group-coulomb-counter


6.  Revision History

Revision 0.1

May 2023
• Initial Revision.

AN1398: EFR32 Coulomb Counting
Revision History

silabs.com | Building a more connected world. Rev. 0.1  |  12



Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless 
tools, documentation, software, 
source code libraries & more. Available 
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each 
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon 
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the 
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or 
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or 
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent 
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in 
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used 
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims 
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.  
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more 
information, visit  www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy 
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®, 
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others 
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered 
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.


	1. Device Compatibility
	2. Coulomb Counter
	2.1 Startup
	2.2 Calibration
	2.2.1 Calibration Load
	2.2.2 Pulse Timing

	2.3 Recalibration
	2.4 Servicing the Counters

	3. Configuration using the Coulomb Counter Driver
	4. Software Example
	5. Related Documents
	6. Revision History



