

silabs.com | Building a more connected world. Copyright © 2023 by Silicon Laboratories Rev. 0.2

AN1422: Provisioning and Firmware Update
Using the DFU Python Script

This document walks through a device firmware update
demonstration using the DFU Python script. The script is an NCP
host application that requires an NCP node connected. The user
can provision, configure, and manage mesh devices, as well as
perform a device firmware update through the NCP node.

KEY POINTS

• Using the DFU Python script
• Using the NCP Empty example
• Bluetooth Mesh Provisioning
• Bluetooth Mesh Device Firmware Update

 AN1422: Provisioning and Firmware Update Using a Python Script
 Introduction

silabs.com | Building a more connected world. Rev. 0.2 | 2

1 Introduction

The Bluetooth Mesh Model specification v1.1 defines a standard way to update device firmware over a Bluetooth mesh network. This
document walks through a firmware update demo using the DFU Python script and the Bluetooth mesh examples, installed as part of the
Bluetooth Mesh SDK. The DFU Distributor example runs as the Distributor node. The Light, Switch, Sensor Client, or Sensor Server
example runs as the node whose firmware is to be updated, called the Target node, and the DFU Python script is used to provision these
nodes and runs as the Initiator node.

To understand the basics of the Bluetooth Mesh Device Firmware Update specification, see AN1319: Bluetooth® Mesh Device Firmware
Update.

https://www.silabs.com/documents/public/application-notes/an1319-bluetooth-mesh-device-firmware-update.pdf
https://www.silabs.com/documents/public/application-notes/an1319-bluetooth-mesh-device-firmware-update.pdf

 AN1422: Provisioning and Firmware Update Using a Python Script
 Getting Started with the DFU Python Script

silabs.com | Building a more connected world. Rev. 0.2 | 3

2 Getting Started with the DFU Python Script

The DFU Python script is an NCP host application running on a system with a Python interpreter, and the application requires the Blue-
tooth mesh stack running in NCP mode on a Silicon Labs device connected to the system. Two or more additional Silicon Labs devices
running the DFU examples are needed to perform a device firmware update. To run the DFU examples provided in the Bluetooth Mesh
SDK, see AN1370: Bluetooth® Mesh Device Firmware Update Example Walkthrough.

2.1 Requirements

The following is required to run the DFU Python script.
• One mainboard with a supported board installed for the NCP target application.
• Simplicity Studio 5
• Gecko SDK Suite 4.2.2 (Bluetooth Mesh SDK 4.2.0) or later, distributed through Simplicity Studio 5. The prebuilt demos and

examples are included in the SDK.
• A host system with a Python interpreter, such as MacOS, Linux, or Windows.
• The Python package PyBGAPI installed in the host system.

To install PyBGAPI, run:

Run pip3 list. The pybgapi package should be version 1.2.0 or later:

2.2 Bluetooth Mesh – NCP Empty v1.1 Application

The Bluetooth Mesh – NCP Empty v1.1 example application is the target application running on a Silicon Labs device. The application
is provided as a prebuilt demo binary image, ready to download and use, and a corresponding example project that you can modify and
then build for the target part. If you want to build your own projects based on the example project, see QSG176: Silicon Labs Bluetooth®
Mesh SDK v2.x Quick-Start Guide. This section describes how to install the prebuilt demo binary to the device.

The precompiled demos are only available for a limited set of parts, including selected EFR32xG13 and xG21 parts and BGM13 and
MGM21 modules. The examples can be built for any part supported by the Bluetooth Mesh SDK.

Note: EFR32xG22 parts can run the Bluetooth Mesh – NCP Empty v1.1 example but do not support provisioner functionality.

1. Open Simplicity Studio 5 with a compatible SoC wireless kit connected to the computer.
2. Select the part in Debug Adapters view to open the Launcher perspective.
3. Click the Example Projects & Demos tab.
4. To see only the demos, turn off the Example Projects.
5. Under Technology Type, filter on Bluetooth Mesh. Next to Bluetooth Mesh – NCP Empty v1.1, click RUN.

pip3 install pybgapi

Package Version
---------- -------
...
pybgapi 1.2.0
pyserial 3.5
...

https://www.silabs.com/documents/public/application-notes/an1370-bluetooth-mesh-device-firmware-update-example.pdf
https://www.silabs.com/products/development-tools/software/simplicity-studio
https://pypi.org/project/pybgapi/
https://www.silabs.com/documents/public/quick-start-guides/qsg176-bluetooth-mesh-sdk-v2x-quick-start-guide.pdf
https://www.silabs.com/documents/public/quick-start-guides/qsg176-bluetooth-mesh-sdk-v2x-quick-start-guide.pdf

 AN1422: Provisioning and Firmware Update Using a Python Script
 Getting Started with the DFU Python Script

silabs.com | Building a more connected world. Rev. 0.2 | 4

2.3 DFU Python Script

The DFU Python script is the host application running on a computer. Connect the Silicon Labs device running the Bluetooth Mesh –
NCP Empty v1.1 example application to the computer on a USB port. Check the serial port information for the connected device.

On Windows, you can find the serial port number in Device Manager, e.g. COM7.

On Linux, you can run the ls /dev/ttyS* command in a terminal to list the device file, e.g. /dev/ttyS0.

On MacOS, you can run the ls /dev/tty.usb* command in a terminal to list the device file, e.g. /dev/tty.usbmo-
dem0004401234561.

Open a terminal and change the directory to the path app/btmesh/example_host/btmesh_host_dfu of Gecko SDK. Run python3
btmesh_host_dfu.py --usb <usb> and you should not get any error message.

If you are running the script in a directory other than the path to the script folder under Gecko SDK, you need to specify the API files with
the --xapi option.

The script generates 3 files on the first run:
• btmesh_host_dfu_cfg.ini – the configuration file the script reads to set command parameters and settings of model profiles. The script

generates default values of the configuration options in the script if the configuration file doesn't exist.
• btmesh_host_dfu_persistence.json – the script saves its persistent states to the file and loads data from the file on each CLI command

and interactive session.
• btmesh_host_dfu.log – the log file of the script's executions containing what BGAPI commands and events the script has sent and

received. The log file could be helpful when something went wrong.

python3 btmesh_host_dfu.py --usb /dev/tty.usbmodem0004401234561

python3 btmesh_host_dfu.py --usb /dev/tty.usbmodem0004401234561 --xapi /Users/<user>/Simplic-
ityStudio/SDKs/gecko_sdk/protocol/bluetooth/api/sl_bt.xapi --xapi /Users/<user>/Simplic-
ityStudio/SDKs/gecko_sdk/protocol/bluetooth/api/sl_btmesh.xapi

 AN1422: Provisioning and Firmware Update Using a Python Script
 Getting Started with the DFU Python Script

silabs.com | Building a more connected world. Rev. 0.2 | 5

The script provides command line and interactive modes. You can run the script with the --help option to see the script usage and
command descriptions in command line mode. The demonstration in Section 3 Firmware Update Demonstration Using the DFU Python
Script will run the script in interactive mode.

python3 btmesh_host_dfu.py --usb /dev/tty.usbmodem0004401234561 --interactive

 AN1422: Provisioning and Firmware Update Using a Python Script
 Firmware Update Demonstration Using the DFU Python Script

silabs.com | Building a more connected world. Rev. 0.2 | 6

3 Firmware Update Demonstration Using the DFU Python Script

This section assumes you have installed the Bluetooth Mesh – NCP Empty v1.1 demo binary to one of the devices, the Bluetooth
Mesh – SoC DFU Distributor example application to another, and the Bluetooth Mesh – SoC Light example application to the other(s).
You should also have generated a firmware update image for the light example. Copy the firmware update image application.gbl to
the root of the script’s directory, run the script in the interactive mode, and then follow the steps below to perform a firmware update.

Note: the DFU Python script sends the GBL file directly to the mesh network.

Section 2 Getting Started with the DFU Python Script and AN1370: Bluetooth® Mesh Device Firmware Update Example Walkthrough
describe the setup of the examples and the preparation of the firmware update image.

The examples display firmware update status on the device’s LCD and output detailed information of the firmware update process to
VCOM UART. To see the logs, open a serial terminal on the serial port assigned for the device with the following serial settings: baud
rate 115200, data bits 8, stop bits 1 and parity None.

1. Perform a factory reset on the provisioner.

2. Provision all devices.

Issue the prov command with the --scan option. The parameter .3 stands for 300 miliseconds.

When it prompts to select devices to provision, select the PB-ADV bearer of devices. In the example, the index 3 is the Distributor device
and the indices 1 and 5 are the Light devices.

>>>reset --type factory
Factory reset completed

>>>prov --scan .3
Scanning for unprovisioned nodes...
Unprovisioned beacon: uuid=994c62c4bf480f51bb3995094a266ec2, bearer=PB-GATT, address=68:0a:e2:dd:29:4a, ad-
dress_type=Public, rssi=-33
Unprovisioned beacon: uuid=5100db6c367ef95aaec40a95fee47966, bearer=PB-GATT, address=d0:cf:5e:68:aa:29, ad-
dress_type=Public, rssi=-28
Unprovisioned beacon: uuid=36494ea9987db45588b29a7b900a9da2, bearer=PB-GATT, address=84:71:27:6e:f2:cd, ad-
dress_type=Public, rssi=-1
...
...
+----------+------------------------------------+-----------+---------------------+----------------+
| Idx | UUID | Bearer | Address | Address Type |
+----------+------------------------------------+-----------+---------------------+----------------+
| 0 | 36494ea9987db45588b29a7b900a9da2 | PB-GATT | 84:71:27:6e:f2:cd | Public |
+----------+------------------------------------+-----------+---------------------+----------------+
| 1 | 36494ea9987db45588b29a7b900a9da2 | PB-ADV | 84:71:27:6e:f2:cd | Public |
+----------+------------------------------------+-----------+---------------------+----------------+
| 2 | 5100db6c367ef95aaec40a95fee47966 | PB-GATT | d0:cf:5e:68:aa:29 | Public |
+----------+------------------------------------+-----------+---------------------+----------------+
| 3 | 5100db6c367ef95aaec40a95fee47966 | PB-ADV | d0:cf:5e:68:aa:29 | Public |
+----------+------------------------------------+-----------+---------------------+----------------+
| 4 | 994c62c4bf480f51bb3995094a266ec2 | PB-GATT | 68:0a:e2:dd:29:4a | Public |
+----------+------------------------------------+-----------+---------------------+----------------+
| 5 | 994c62c4bf480f51bb3995094a266ec2 | PB-ADV | 68:0a:e2:dd:29:4a | Public |
+----------+------------------------------------+-----------+---------------------+----------------+
Select devices to provision
Comma/Space separated list of indexes, BT addresses or UUIDs

Devices:3,1,5
The device with 5100db6c367ef95aaec40a95fee47966 UUID is provisioned.
The device with 36494ea9987db45588b29a7b900a9da2 UUID is provisioned.
The device with 994c62c4bf480f51bb3995094a266ec2 UUID is provisioned.

https://www.silabs.com/documents/public/application-notes/an1370-bluetooth-mesh-device-firmware-update-example.pdf

 AN1422: Provisioning and Firmware Update Using a Python Script
 Firmware Update Demonstration Using the DFU Python Script

silabs.com | Building a more connected world. Rev. 0.2 | 7

3. Rename nodes for easy identification.

Issue the node list command to show the nodes in the mesh network.

Issue the node rename command to rename nodes.

4. Configure nodes with built-in profiles.

Issue the group add command to create a new group, specify a group address, specify a configuration profile to apply, and specify
what node(s) to be added to the group.

Add the Distributor node to the group named GrpDist1:

Add the Light node(s) to the group named GrpLight1:

>>>node list
+------------+-----------------+--------------------------------------+-------------+--------------+
| Idx | Name | UUID | Address | Elements |
+------------+-----------------+--------------------------------------+-------------+--------------+
| 0 | Node_2005 | 5100db6c367ef95aaec40a95fee47966 | 0x2005 | 1 |
+------------+-----------------+--------------------------------------+-------------+--------------+
| 1 | Node_2006 | 36494ea9987db45588b29a7b900a9da2 | 0x2006 | 3 |
+------------+-----------------+--------------------------------------+-------------+--------------+
| 2 | Node_2009 | 994c62c4bf480f51bb3995094a266ec2 | 0x2009 | 3 |
+------------+-----------------+--------------------------------------+-------------+--------------+
| 3 | Provisioner | 764b0e71f3fc5c5ab856d6e1a90b4e32 | 0x2001 | 4 |
+------------+-----------------+--------------------------------------+-------------+--------------+

>>>node rename Node_2005 Distributor_2005
>>>node rename Node_2006 Light_2006
>>>node rename Node_2009 Light_2009
>>>node list
+-----------+---------------------+-------------------------------------+------------+-------------+
| Idx | Name | UUID | Address | Elements |
+-----------+---------------------+-------------------------------------+------------+-------------+
| 0 | Distributor_2005 | 5100db6c367ef95aaec40a95fee47966 | 0x2005 | 1 |
+-----------+---------------------+-------------------------------------+------------+-------------+
| 1 | Light_2006 | 36494ea9987db45588b29a7b900a9da2 | 0x2006 | 3 |
+-----------+---------------------+-------------------------------------+------------+-------------+
| 2 | Light_2009 | 994c62c4bf480f51bb3995094a266ec2 | 0x2009 | 3 |
+-----------+---------------------+-------------------------------------+------------+-------------+
| 3 | Provisioner | 764b0e71f3fc5c5ab856d6e1a90b4e32 | 0x2001 | 4 |
+-----------+---------------------+-------------------------------------+------------+-------------+

>>>group add --appkey-idx 0 --group-addr 0xC000 --sub-addrs Dist*[0] --profile distributor --name GrpDist1
App group GrpDist1 adds appkey binding to BLOB Transfer Client model on 0x2005 element address.
App group GrpDist1 adds appkey binding to Firmware Update Client model on 0x2005 element address.
App group GrpDist1 adds appkey binding to Firmware Distribution Server model on 0x2005 element address.
App group GrpDist1 adds appkey binding to Firmware Update Server model on 0x2005 element address.
App group GrpDist1 adds appkey binding to BLOB Transfer Server model on 0x2005 element address.
App group GrpDist1 adds subscription to Firmware Update Server model on 0x2005 element address.
App group GrpDist1 adds subscription to BLOB Transfer Server model on 0x2005 element address.

>>>group add --appkey-idx 0 --group-addr 0xC001 --sub-addrs Light*[0] --profile target_node --name GrpLight1
App group GrpLight1 adds appkey binding to Firmware Update Server model on 0x2009 element address.
App group GrpLight1 adds appkey binding to BLOB Transfer Server model on 0x2009 element address.
App group GrpLight1 adds appkey binding to Firmware Update Server model on 0x2006 element address.
App group GrpLight1 adds appkey binding to BLOB Transfer Server model on 0x2006 element address.
App group GrpLight1 adds subscription to Firmware Update Server model on 0x2009 element address.
App group GrpLight1 adds subscription to BLOB Transfer Server model on 0x2009 element address.
App group GrpLight1 adds subscription to Firmware Update Server model on 0x2006 element address.
App group GrpLight1 adds subscription to BLOB Transfer Server model on 0x2006 element address.

 AN1422: Provisioning and Firmware Update Using a Python Script
 Firmware Update Demonstration Using the DFU Python Script

silabs.com | Building a more connected world. Rev. 0.2 | 8

Show the group information:

5. Upload a firmware image to the Distributor.

Issue the dist upload command to upload application.gbl to the Distributor.

Show the firmware list from the Distributor.

6. Distribute the firmware image to Light node(s).

Issue the dist start command to instruct the Distributor to start firmware image distribution.

>>>group list
+-------------------+-----------------------+---------------------------+--------------------------+
| Idx | Name | Group Address | Appkey Index |
+-------------------+-----------------------+---------------------------+--------------------------+
| 0 | GrpDist1 | 0xC000 | 0 |
+-------------------+-----------------------+---------------------------+--------------------------+
| 1 | GrpLight1 | 0xC001 | 0 |
+-------------------+-----------------------+---------------------------+--------------------------+

>>>dist upload --distributor Distributor_2005 --fwid 0x02FF:s:light --metadata s:test --timeout-base 1 applica-
tion.gbl
FW data (427260 bytes) is loaded from application.gbl.
Upload progress: 0.00%
...
...
...
Upload progress: 100.00%
Firmware with 0x02FF:light FWID is uploaded to Distributor (0x2005).

>>>dist info --fw-list --distributor Distributor_2005
+---+--+
| Index | FWID |
+---+--+
| 0 | 0x02FF:light |
+---+--+

>>>dist start --distributor Distributor_2005 --fw-list-idx 0 --group GrpLight1
Distribution phase is changed to transfer active.
Distribution transfer progress: 0%
...
...
Distribution transfer progress: 100%
Distribution phase is changed to applying update.
Distribution phase is changed to completed.
The FW distribution of 0 FW list index is completed on the Distributor (0x2005).
+-----------------+----------------+----------------------+--------------------+-------------------+
| Address | FW Idx | Phase | BLOB status | DFU status |
+-----------------+----------------+----------------------+--------------------+-------------------+
| 0x2006 | 0 | apply success | success | success |
+-----------------+----------------+----------------------+--------------------+-------------------+
| 0x2009 | 0 | apply success | success | success |
+-----------------+----------------+----------------------+--------------------+-------------------+

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1 Introduction
	2 Getting Started with the DFU Python Script
	2.1 Requirements
	2.2 Bluetooth Mesh – NCP Empty v1.1 Application
	2.3 DFU Python Script

	3 Firmware Update Demonstration Using the DFU Python Script

