
AN1428: SiWx917 Secure Debug

This application note describes the architectural overview of Sili-
con Labs SiWx917 device and summarizes Secure Debug lock
and unlock functionality with example command references.
SiWx917 is a low-cost, dual-core Wi-Fi device with hardware isolation and best-in-class
security features. This document details and provides example code for the Secure De-
bug functionality of SiWx917 products.

KEY POINTS

• Architectural Overview of Secure Debug
• Debug Token and challenge format
• Using the Secure Debug Command API
• Examples of Locking and Unlocking

commands

silabs.com | Building a more connected world. Copyright © 2024 by Silicon Laboratories Rev. 0.1

1. Introduction

The Silicon Labs SiWx917 is a dual-core, ultra-low-power Wi-Fi 6 and Bluetooth Low Energy (BLE) SoC ideal for developing battery-
operated devices that need long battery life. The cryptographic and wireless protocol subsystem consists of a multi-threaded processor
(ThreadArch®), integrated baseband digital signal processing and analog front-end with integrated power amplifier. The Applications
Micro-processor (MCU) is an ARM Cortex-M4F with embedded SRAM, flash, an AI/ML accelerator and a security engine designed for
high device and protocol security. Advanced security features such as Secure Boot, Anti-Rollback protection, Secure Debug, and hard-
ware isolation of the ThreadArch Subsystem (TASS) from the MCU Subsystem (MCSS) make the Silicon Labs SiWx917 a best-in-
class, security-conscious platform for ultra-low-power, low-cost Wireless IoT devices.

AN1428: SiWx917 Secure Debug
Introduction

silabs.com | Building a more connected world. Rev. 0.1 | 2

2. Secure Debug

To aid in the development and debug process, both cores in the SiWx917 have standard Joint Test Action Group (JTAG) debug interfa-
ces providing access to memory, registers, and halt mode debugging of firmware operating on each device. For security purposes, this
functionality is disabled by default, preventing malicious entities from accessing sensitive data or tampering with normal device opera-
tion. However, in the event that a device must be debugged in the field, the SiWx917 bootloader implements a cryptographically-se-
cured debug activation protocol allowing the holder of a firmware’s private sign key to generate a debug token that can be used to
unlock the debug port upon reboot. This secure debug functionality allows developers to quickly triage device and firmware failures
without compromising security during normal operation. This document will describe the hardware and firmware architecture of the se-
cure debug functionality of the SiWx917, detail the Secure Debug unlock process and lock/unlock API, and provide example commands
to lock and unlock both debug ports on the TASS and MCSS, respectively.

AN1428: SiWx917 Secure Debug
Secure Debug

silabs.com | Building a more connected world. Rev. 0.1 | 3

3. Architectural Overview

The SiWx917 is a low-cost Wi-Fi device with advanced security features. In the following sections, hardware isolation, secure boot, re-
set behavior and debug token storage will be outlined with the intent of establishing a background for understanding further sections on
the Secure Debug behavior of this device.

3.1 eFuse

eFuses are a set of OTP configurations that determine the behavior of the SiWx917. The EFUSE settings relevant to secure debug are
described in the following table.

Table 3.1. eFuse Settings

EFUSE Name Description Default

disable_ta_jtag Read/write bit to enable/disable the TASS JTAG
port on startup

Disabled (1)

disable_ta_jtag_status Read only bit indicating the accesibility of the
TASS JTAG port

Disabled (1)

disable_m4_jtag Read/write bit to enable/disable the MCSS JTAG
port on startup

Disabled (1)

disable_m4_jtag_status Read only bit indicating the accesibility of the
MCSS JTAG port

Disabled (1)

AN1428: SiWx917 Secure Debug
Architectural Overview

silabs.com | Building a more connected world. Rev. 0.1 | 4

3.2 TASS and Secure Zone

To provide isolation of mission-critical communication protocol and security functionality, the SiWx917 has two cores: the MCSS, tasked
with execution of application-level code, and the TASS – which handles communication protocol implementations and sensitive crypto-
graphic functionality. By restricting code on the TASS to a minimum subset of protocol and cryptographically sensitive operations, the
TASS firmware base can remain small and easily auditable, with broad automation test coverage. The MCSS can then consist of a
larger codebase and attack surface while still ensuring that mission critical hardware and cryptographic operation remains secure in the
event of an exploit in the broader operational codebase.

To protect device registers, memory access, and program flow control from malicious entities, the debug ports of both the TASS and
MCSS cores are disabled by default on reboot. Debug access can only be enabled by the TASS to prevent vulnerabilities in application
code from allowing unauthorized debug access. TASS memory and peripherals are isolated in hardware from the MCSS by the Secure-
Zone interface, ensuring that all transactions take place through the secure Mailbox and associated APIs. By restricting interaction be-
tween the MCSS and TASS, vulnerabilities can be prevented from spreading across the SecureZone boundary. Because of these ar-
chitectural considerations, the debug unlock process requires a debug challenge be provided to the TASS.

AN1428: SiWx917 Secure Debug
Architectural Overview

silabs.com | Building a more connected world. Rev. 0.1 | 5

3.3 Secure Boot

The secure bootloader of the SiWx917 consists of two mandatory stages and one optional second-stage bootloader patch, effectively
acting as a third stage. The first stage is present in ROM and is not updatable or patchable. This First Stage Bootloader (FSB) forms
the immutable root of trust upon which SiWx917’s secure code platform relies. The immutable FSB is responsible for the following oper-
ations:
• Sensing and applying EFUSE settings
• Performing hardware-specific device setup (calibration, reset value modifications, etc.)
• Validating and executing SecureBoot and ImageLoad of external flash, if present
• Validating and executing SecureBoot and ImageLoad from external primary devices if flash is not present
• Applying patches to the Second Stage Bootloader (SSB)

The FSB is also responsible for writing to write-once registers that configure hardware peripherals, and in particular is responsible for
locking the debug ports. On reset, the FSB will write to the debug disable registers for both the TASS and MCSS unless a valid debug
token is stored in flash.

The bootloader communicates with the host over UART as follows:

Table 3.2. Bootloader UART Settings

Baud rate 115200

parity none

Data bits 8

Stop bits 1

Tx pin GPIO_9

Rx pin GPIO_8

3.4 Debug Token Data Storage

Because the immutable FSB is responsible for writing the write-once debug lock register, which is only writable once after reset, any
debug unlock token must be passed to the FSB and the device must be rebooted for a change in the state of either JTAG port to take
effect. The nonce from this debug unlock token is stored AES-CBC encrypted by the TASS using a Physically Unclonable Function
(PUF) wrapped key in flash to persist it for verification by the FSB between reboots. Note that while the nonce can be dumped from
flash, because of its PUF wrapped format it can only be successfully decrypted on the device it was originally generated for. The debug
token itself consists of one 16-byte nonce generated by the TASS after a debug request is issued, a one-byte command denoting which
port shall be unlocked, seven bytes of data padding, and a 72-byte ECDSA p256k host signature – which is used to verify the identity of
the host device requesting debug access. One debug token may be stored per-core in addition to one unlock token – which consists of
a nonce, command, and data pad that must be equivalent to the stored debug token when decrypted. Upon reboot, the TASS will check
the nonce, command, and signature per-core, writing the write-once debug lock register if the two tokens are not equal.

AN1428: SiWx917 Secure Debug
Architectural Overview

silabs.com | Building a more connected world. Rev. 0.1 | 6

4. Debug Unlock Process

The following section details the step-by-step process for unlocking and locking the debug interface. Note that for both cores, the proc-
ess is the same except for the write-once locking register that is written during FSB SecureBoot.

4.1 Provisioning for Secure Debug Lock/Unlock

4.1.1 Firmware Public Keys

Each core in the SiWx917, the TASS and MCSS, has a firmware public key used for verifying the authenticity of the firmware intended
to run on that core. The same key is also used to verify the authenticity of secure debug lock/unlock tokens. To lock and unlock the
TASS and MCSS cores of the SiWx917, the corresponding firmware public keys must be provisioned to the device.

4.1.2 Secure Boot

Secure boot must be enabled in order for the ISP bootloader to be able to unlock either JTAG port. Locking a JTAG port with secure
boot disabled results in that port being permanently locked.

AN1428: SiWx917 Secure Debug
Debug Unlock Process

silabs.com | Building a more connected world. Rev. 0.1 | 7

4.2 Debug Unlock

To unlock either of the JTAG ports, the host first sends a command to start the debug challenge. This command arrives over an ena-
bled host interface such as UART and will contain an "m" to initiate MCSS unlock or a "t" to initiate TASS unlock. In response to this
command, the host will generate a 16-byte nonce for the requested device, which it encrypts using a PUF-wrapped key and saves in
flash as well as sending the nonce in plaintext back to the host. This token is also known as the Debug Challenge Token.

Note: The M4 JTAG port must be unlocked to unlock the TA JTAG port. Debugging on the TA JTAG port requires a custom JTAG
debugger.

Upon receiving the Debug Challenge Token, the host then constructs a payload containing the following:
• 128 bit nonce
• device information defined in the following table

Table 4.1. Device Information

Byte 0 Bytes 1 – 7

t - TASS

m - M4SS

Reserved

• serial number
• debug command

and signs the token with the firmware update private key for that device. This "authorization" token is then transmitted to the TASS,
which uses its corresponding firmware public key to verify the token. If the authorization token is valid, its corresponding nonce is stored
encrypted in flash. For both nonces and their commands, 7 bytes of random padding are inserted to ensure the two instances of same
plaintext do not result in identical ciphertexts.

Table 4.2. Debug Authorization Token

Nonce Command User Data Signature (ASN.1 Format)

16 bytes 1 byte 7 bytes 72 – 74 bytes

Table 4.3. Bootloader Commands for Secure Debug Lock/Unlock

Command Description

s Instructs bootloader to expect a debug authorization token

AN1428: SiWx917 Secure Debug
Debug Unlock Process

silabs.com | Building a more connected world. Rev. 0.1 | 8

Command Description

l Change debug interface

m MCSS core

t TASS core

4.3 Debug Lock

When a debug session is revoked, the host device simply sends a new Debug Challenge Request that causes the TASS to update its
stored Debug Challenge Token's nonce, which the host then intentionally does not return, leading to the authorization token to remain
at its old value. Note that due to the persistent nature of storing nonces in flash, once a device is unlocked, it will remain unlocked until
the nonces are no longer equal in memory either by a revocation or by flash modification. A nonce can be exfiltrated from a device and
used to unlock that device at a later time, but since the tokens are encrypted with PUF wrapped keys, it is not possible to use one
device's valid debug token to unlock another device.

AN1428: SiWx917 Secure Debug
Debug Unlock Process

silabs.com | Building a more connected world. Rev. 0.1 | 9

5. Examples

AN1428: SiWx917 Secure Debug
Examples

silabs.com | Building a more connected world. Rev. 0.1 | 10

5.1 Provisioning for Secure Boot

1. Initialize security features:

commander manufacturing init –mbr default

2. Create a JSON file with the keys data:

commander util genkeyconfig –outfile keys\keys.json –device Si917

3. Save the keys to PEM format as follows:

commander util extractkeys keys\keys.json –dir keys

AN1428: SiWx917 Secure Debug
Examples

silabs.com | Building a more connected world. Rev. 0.1 | 11

4. Provision keys to the device:

commander manufacturing provision –keys keys\keys.json

AN1428: SiWx917 Secure Debug
Examples

silabs.com | Building a more connected world. Rev. 0.1 | 12

5. Provision secure boot and security settings:

commander manufacturing provision –data mbr_security.json

An example mbr_security.json file is provided below:

{
 “valids”: 0,
 “puf_activation_code_addr”: 8192,
 “valids”: 0,
 “ ffuse_data”: {
 “disable_m4ss_kh_access”: 0,
 “m4_digital_signature_validation”: 1,
 “m4_encrypt_firmware”: 0,
 “m4_fw_encryption_mode”: 0,
 “m4_secure_boot_enable”: 0,
 “ta_digital_signature_validation”: 1,
 “ta_encrypt_firmware”: 0,
 “disable_m4_access_frm_tass_sec”: 1,
 “ta_secure_boot_enable”: 1,
 “disable_ta_jtag”:0,
 “disable_m4_jtag”:0
 },
 “key_desc_table_addr”: 768
}

Figure 5.6. Example eFuse Settings JSON File

5.2 Using Simplicity Commander to Lock/Unlock Debug Access

Operations such as locking or unlocking JTAG port access require access to the ISP bootloader through the UART. On the BRD4002A
baseboard (WPK), access is available through the virtual com port (VCOM). WPK firmware version 1v12p4 or greater is required. To
enable access to the ISP bootloader through the VCOM port, the following steps are required:

1. Connect the WPK board by USB to your computer.
2. Open Simplicity Studio.
3. Right click the WPK in the "debug adapters" panel and select the "Launch Console" menu item.
4. Select the Admin tab.
5. Enter the following in the text entry box and press enter "serial vcom config handshake aux".
6. Close Simplicity Studio.

Accessing the ISP bootloader with the BRD4001A (WSTK) requires an external USB/UART adapter such as Silicon Labs CP2102. The
connections are specified in Table 3.2 Bootloader UART Settings on page 6.

AN1428: SiWx917 Secure Debug
Examples

silabs.com | Building a more connected world. Rev. 0.1 | 13

5.2.1 Locking Debug Access

This section demonstrates how to lock the JTAG port of the SiWx917. Saving a copy of the lock token is optional, but it is recommen-
ded as the token can be used to unlock the JTAG port by users who do not have access to the private signing key.

1. Put the SiWx917 target device in ISP mode. For instance, hold the ISP button on the radioboard (BRD4338A), and press the reset
button on the WSTK/WPK board.

2. Lock the part and save the token as follows:

commander serial lock M4 --token unlock.token --key signkey.pem --serialport COM14

3. Reset the device to lock the JTAG port.

5.2.2 Unlocking Debug Access with a Token

1. Put the SiWx917 target device in ISP mode. For instance, hold the ISP button on the radioboard (BRD4338A), and press the reset
button on the WSTK/WPK board.

2. Unlock the part as follows: commander serial unlock –token lock.token

3. Reset the part to unlock the JTAG port.
4. Once the debugging session is complete, update the debug challenge nonce by locking the port as described in 5.2.1 Locking De-

bug Access.

5.2.3 Unlocking Debug Access with the Private Signing Key

1. Put the SiWx917 target device in ISP mode. For instance, hold the ISP button on the radioboard (BRD4338A), and press the reset
button on the WSTK/WPK board.

2. Unlock the JTAG port as follows:

commander serial unlock m4 --key keys\m4_private_key.pem

3. Reset the part to unlock the JTAG port.
4. Once the debugging session is complete, update the debug challenge nonce by locking the port as described in 5.2.1 Locking De-

bug Access.

AN1428: SiWx917 Secure Debug
Examples

silabs.com | Building a more connected world. Rev. 0.1 | 14

6. Revision History

Revision 0.1

February 2024
• Initial revision

AN1428: SiWx917 Secure Debug
Revision History

silabs.com | Building a more connected world. Rev. 0.1 | 15

IoT Portfolio
www.silabs.com/products

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Smart. Connected.
Energy-Friendly.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1. Introduction
	2. Secure Debug
	3. Architectural Overview
	3.1 eFuse
	3.2 TASS and Secure Zone
	3.3 Secure Boot
	3.4 Debug Token Data Storage

	4. Debug Unlock Process
	4.1 Provisioning for Secure Debug Lock/Unlock
	4.1.1 Firmware Public Keys
	4.1.2 Secure Boot

	4.2 Debug Unlock
	4.3 Debug Lock

	5. Examples
	5.1 Provisioning for Secure Boot
	5.2 Using Simplicity Commander to Lock/Unlock Debug Access
	5.2.1 Locking Debug Access
	5.2.2 Unlocking Debug Access with a Token
	5.2.3 Unlocking Debug Access with the Private Signing Key

	6. Revision History

