

 silabs.com | Building a more connected world. 1 | Page

AN1432: SiWx917 NCP SPI Protocol
Application Note

Version 1.0
May 2024

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 2 | Page

Table of Contents
1 Introduction ... 3

1.1 SPI Features .. 3
2 Prerequisites ... 4
3 Terminology .. 5
4 SiWN917 SPI App Note for Hardware and Software Configurations ... 6

4.1 Description .. 6
4.2 SPI Modes .. 7
4.3 SPI Transactions Logic Capture .. 8
4.4 SiWN917 SPI Logs Decoding Guide ... 10
4.5 Recommendations Based on Software Configurations ... 16

5 Summary ... 18

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 3 | Page

1 Introduction
This document provides information on the hardware design and software configurations for the host SPI interface
available in SiWx917 NCP or hereby termed as SiWN917.

Serial Peripheral Interface (SPI) is one of the most widely used serial interfaces between microcontrollers and
peripheral ICs, such as sensors, ADCs, DACs, Shift Registers, SRAM, and others including modems. Every SPI
system consists of one primary/main device and one or more secondary devices, where the main device initiates the
communication by asserting the CSn (nth Chip Select) line. When a secondary device is selected, the primary starts
clocking out the data through the MOSI (Main Out Secondary In) line and receives the data through the MISO (Main In
Secondary Out) line. The primary sends and receives one bit for every clock edge. One byte can be exchanged in
eight clock cycles. The main device finishes communication by de-asserting the CSn line.

1.1 SPI Features

Some of the notable features of SPI protocol are:

• Full-duplex communication in the default version of this protocol.
• • Push-pull (as opposed to open-drain) provides good signal integrity and high speeds.
• Higher throughput than I2C or SMBus. Not limited to any maximum clock speed, enabling potentially high

speeds for data transfer.
• Complete protocol flexibility for the bits transferred.
• Extremely simple hardware interfacing.
• Uses only four pins on IC packages and wires in board layouts or connectors, fewer than in parallel interfaces.
• At most, one unique bus signal per device (chip select); all others are shared.
• Signals are unidirectional allowing for easy galvanic isolation.
• Simple software implementation.
• SPI Secondary Interface supports 8-bit and 32-bit data granularity.
• It also supports the gated mode of SPI clock, and the Low, High and Ultra high-frequency modes.

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 4 | Page

2 Prerequisites
• Windows PC with host interface (USB/UART/SPI/SDIO).
• MCU/Host with SPI-main interface (e.g. EFR32).
• Any logic analyzer for analyzing the data lines.
• IDE to create an application for the host (e.g. Simplicity Studio).
• BRD8045A EXP Adapter Board for SiWx917 Co-processors.

https://www.silabs.com/mcu
https://www.silabs.com/developers/simplicity-studio
https://www.silabs.com/wireless/wi-fi/siwx917-wireless-socs

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 5 | Page

3 Terminology
• SPI – Serial Peripheral Interface
• MOSI – Main Out Secondary In
• MISO – Main In Secondary Out
• CSN – Chip Select Bar
• PC – Personal Computer
• IDE – Integrated Development Environment

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 6 | Page

4 SiWN917 SPI App Note for Hardware and Software Configurations

4.1 Description

SiWx917 NCP mode (SiWN917) supports only the SPI secondary interface. SiWN917 detects the host interface
automatically after connecting to respective host controllers like SDIO, SPI, UART, USB and USB-CDC. SPI
interfaces are detected through hardware packet exchanges. Below are the signal descriptions for the SPI interface.
For more details about the pin names and descriptions, please refer to the SiWx917 datasheet.

Signal Name Supply Domain Direction Initial State

(Power-up, Active
Reset & Sleep State)

Description

(All signals are in default states
unless otherwise mentioned)

SPI_CLK SDIO_IO_VDD Input High-Z Serial Clock Input

SPI_CSN SDIO_IO_VDD Input High-Z Active-low Chip Select signal initiated
by the main device to select a
secondary device

SPI_MOSI SDIO_IO_VDD Input High-Z Main-Out-Secondary-In signal for data
transfer from main device to secondary
device

SPI_MISO SDIO_IO_VDD Output High-Z Main-In-Secondary-Out signal for data
transfer from Secondary to main device

SPI_INTR SDIO_IO_VDD Output High-Z Interrupt signal to main device for
indicating that the data is available with
the Secondary device. Upon interrupt,
main device must initiate SPI
transaction and read the available data
on the SPI_MISO line. For more details
about this signal, read the below 'Note'
section.

SPI_ERR_INTR SDIO_IO_VDD Output Initial State: Pull-up

Sleep State: High-Z

This signal is not available in the
Default state. Check its availability in
the Software. If SPI core logic within
the device has gone to a state where it
is not able to recover and process SPI
transactions from the external main
device, then SPI_ERR_INTR is
asserted to the external main device
about this status. It is an active high
output signal. Once this signal is
asserted by the devices, then the
external host must initialize SPI and
start the transactions again.

NOTE

• "Default” state refers to the state of the device after initial boot loading and firmware loading is complete.
• "Sleep" state refers to the state of the device after entering Sleep state which is indicated by Active-High

'SLEEP_IND_FROM_DEV' signal.
• Refer to the WiSeConnect API Reference Guide for software programming information in embedded mode.

Ensure that the input signals, SPI_CSN, and SPI_CLK are not floating when the device is powered up and reset is de-
asserted. This can be done by ensuring that the host processor configures its signals (outputs) before de-asserting
the reset. ‘SPI_INTR’ is the interrupt signal driven by the secondary device. This signal may be configured as Active-
high or Active-low. If it is active-high, an external pull-down resistor may be required. If it is active-low, an external
pull-up resistor may be required. This resistor can be avoided if the following action needs to be carried out in the host
processor.

https://www.silabs.com/documents/public/data-sheets/siwx917-ncp-datasheet.pdf
https://docs.silabs.com/wiseconnect/latest/wiseconnect-api-reference-guide-wi-fi/sl-wifi

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 7 | Page

1. To use the signal in active-high or active-low mode, ensure that during the power-up of the device the
interrupt is disabled in the host processor before de-asserting the reset. After de-asserting the reset, the
interrupt needs to be enabled only after the SPI initialization is done, and the interrupt mode is programmed to
either active-high or active-low mode as required.

2. The host processor needs to disable the interrupt before the ULP Sleep mode is entered and enable it after
the SPI interface is reinitialized upon wakeup from ULP Sleep.

4.2 SPI Modes

There are four SPI modes, as shown in the below table.

SPI Mode Clock Polarity
(CPOL)

Clock Phase

(CPHA)
Source Destination

0 0 0 Data driven on rising edge
of the clock

Data sampled on falling edge
of the clock

1 0 1 Data driven on falling edge
of the clock

Data sampled on rising edge
of the clock

2 1 0 Data driven on falling edge
of the clock

Data sampled on rising edge
of the clock

3 1 1 Data driven on rising edge
of the clock

Data sampled on falling edge
of the clock

NOTE: SiWN917 supports only Mode-0 and Mode-3 from the above. As of now, SiWN917 is brought up in Mode-0 by
default, and there is no API available for changing the mode.

The following are the example diagrams for Mode-0 and Mode-3 respectively. The data is shown on the MOSI and
MISO lines. The start and end of transmission are indicated by the dotted green line. The dotted orange line indicates
the data-driven by the source, and the dotted blue line indicates the data sampled by the destination.

In Mode-0, clock polarity is ‘0’ which indicates that the idle state of the clock signal is low. The clock phase in this
mode is ‘0’. Data transmission occurs during the rising edge of the clock.

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 8 | Page

In Mode-3, the clock polarity is ‘1’ which indicates the idle state of the clock signal is high. The clock phase in this
mode is 1. Data transmission occurs during the rising edge of the clock.

4.3 SPI Transactions Logic Capture

In this section, SPI transactions between SiWN917 and EFR32xG21 MCU are captured using Logic Software. The
following are the setup instructions for SPI protocol in 'Logic software'.

• Connect the Saleae Logic analyzer pins with the SPI pins on the host MCU for SPI logic capture.
• Open the 'Logic' software and click on the 'Device Settings' tab towards the right side of the Logic software

screen and select the 'Digital 'channels that are connected with Saleae Logic Analyzer.
• Select the sampling rate. This must be greater than the SPI clock frequency being used by host MCU for

communication with SiWN917 (Generally, the higher the better).

• Now click on 'Analyzers' tab towards the right side of the screen and select 'SPI'.
• A new 'SPI' window is opened. Select the corresponding channels for SPI MOSI, MISO, Clock and Enable.

Select 'Most Significant Bit First' as the significant bit, clock state as CPOL = 0 and clock phase as CPHA = 0.
Other settings must be made as per the below image.

https://www.saleae.com/downloads/

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 9 | Page

• Once the above setup is complete, one should see the SPI transactions in the 'Logic Software' as soon as an
SiWx917 Wi-Fi/BLE application is run and the 'Play' button is clicked in Logic software. These transactions
should look like the following:

NOTE

• To be precise, the above SPI transactions can be captured when “sl_net_init()” API (defined in the
'wiseconnect/components/service/network_manager' sub-component of the WiSeConnect SDK is run.
Driver initialization, device initialization, and wireless initialization happen within this API. As an out-of-box
experience, users can run any default WiSeConnect example from the SDK folder,
'wiseconnect/examples/featured' or 'wiseconnect/examples/snippets' where this API is called in the
corresponding 'app.c' file of the application.

• Before running an application, users must ensure they successfully port the WiSeConnect SDK HAL
(Hardware Abstraction Layer) to the host MCU in use. For more information on HAL porting, refer to 'SiWx91x
NCP WiSeConnect 3 SDK Porting Guide'. The SDK is already ported to EFx32 family of MCUs and the
corresponding HAL can be found in ‘wiseconnect/components/si91x/platforms/efx32’.

https://github.com/SiliconLabs/wiseconnect

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 10 | Page

• With EFx32 as the host MCU, the host SPI interface is brought-up with 12.5 MHz SPI clock frequency (Check
the baud rate in the definition of 'sl_si91x_host_usart2_init()' API present in the file,
'wiseconnect/components/si91x/platforms/efx32/efx32_ncp_host_spi.c'). To enable high-speed mode,
the user has to implement the 'sl_si91x_host_enable_high_speed_bus()' API for the host MCU in use as
part of the HAL porting. For EFx32, this has been implemented (definition can be found in
'efx32_ncp_host_spi.c' file). Note that SiWx917 host SPI interface supports host SPI clock frequencies up to
100 MHz.

4.4 SiWN917 SPI Logs Decoding Guide

The SPI transaction flow between SiWN917 and the host MCU is described in this section. The following are captures
of the SPI transfers after a module hardware reset.

SPI Initialization
The SPI initialization process takes place during ‘device initialization’. The host MCU needs to initialize SPI to
communicate with SiWN917. This is done by transmitting 0x12, 0x4A, 0x5C, 0x00 on the MOSI line. After successful
SPI initialization, SiWN917 sends a success token, i.e., 0x58 on MISO line.

MOSI: 0x12 0x4A 0x5C 0x00

MISO: 0x00 0x00 0x00 0x58 (Successful SPI Initialization)

NOTE: If your application requires SPI clock frequency greater than 25 MHz, the host must initialize the SPI interface
with a clock frequency less than or equal to 25 MHz. Post SPI initialization, all the other SPI transactions can be
carried out at a clock frequency greater than 25 MHz. This functionality is to be implemented while porting
WiSeConnect 3 SDK to your host application. Refer to Porting for an External Host guide.

Before going further, it is necessary to note the following SPI tokens sent by SiWN917 over MISO:

• 0x58 - Success response
• 0x52 - Failure response
• 0x54 - Busy response (a new transaction is initiated while the previous transaction's response is still pending

from the module)
• 0x55 - Start token (Module is ready to transmit data)

NOTE:

• Recommendation: Use a SPI cable of less than 2 inches length for prototyping.
• If the SPI cable is not connected properly between the host and SiWN917, the host MCU waits for the

response from the module for some reasonable time and throws 'SL_STATUS_SPI_BUSY' error (with error
code: 0x0054) for device initialization.

https://docs.silabs.com/wiseconnect/latest/wiseconnect-developers-guide-migr-porting-overview/#porting-wi-se-connect-sdk-v3-x-for-an-external-host

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 11 | Page

SPI Transactions For ‘BOARD READY’ And ‘CARD READY’ Messages
BOARD READY: After successful initialization of the SPI interface with the module, the first message checked by the
host is 'BOARD READY' from the module. If the bootup options integrity passes, the RSI_HOST_INTF_REG_OUT
register contains 0xABxx where 'xx' represents the two-nibble bootloader version.

CARD READY: After the firmware gets loaded onto the module successfully, 'CARD READY' is the first message
from the loaded firmware that is sent to the Host MCU.

The SPI interface is programmed to perform transfers using commands C1, C2, C3 and C4 and an optional 32-bit
address (sent during register read/write or memory read/write).

After successful initialization of the SPI interface, the host waits for 'BOARD READY' from the module. For checking
the BOARD READY from the module, the host reads the contents of RSI_HOST_INTF_REG_OUT register of module
with LSB of address transmitted first.

MOSI Byte Explained

(Tx to Module)
MOSI MISO MISO Byte

Explained

(Tx to Host MCU)

Other Possibilities

Memory Read 0x54 0x00 Dummy data -

8-bit Mode 0x00 0x58 Success token 0x52, 0x54

LSB of the length of data to
be read - Two bytes

0x02 0x58 Success token 0x52, 0x54

MSB of the length of data to
be read

0x00 0x58 Success token 0x52, 0x54

RSI_HOST_INTF_REG_OUT
Address to be read (LSB first)

0x3C 0x58 Success token for
Memory Read

0x52, 0x54

 0x00 0x58 Success token 0x52, 0x54

 0x05 0x58 Success token 0x52, 0x54

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 12 | Page

 0x41 0x58 Success token 0x52, 0x54

Dummy data 0x00 0x58 Success token 0x52, 0x54

Dummy data 0x00 0x55 Start token followed
by two bytes of data

0x52, 0x54

Dummy data 0x00 0x11 Bootloader version
1.1

0x10 – Bootloader version 1.0

Dummy data 0x00 0xAB HOST_INTERFACE_
REG_OUT_VALID

(0xAB11 or 0xAB10
indicates that the

bootloader integrity
check is passed. This
is named as ‘BOARD
READY’ message)

0xABF1 – indicates that the last
configuration of bootup options is not

saved

0xABF2 – indicates that the bootup
options checksum failed

Before checking the CARD READY from the module, the host needs to check whether the Interrupt signals are active
low or active high. This can be known from the contents of 'RSI_INT_MASK_REG_ADDR' register (at address
0x41050000) of module by performing memory read to that address.

MOSI Byte Explained

(Tx to Module)
MOSI MISO MISO Byte Explained

(Tx to Host MCU)
Other

Possibilities

Memory Read 0x54 0x00 Dummy data -

8-bit Mode 0x00 0x58 Success token 0x52, 0x54

LSB of the length of data to be read
- Two bytes

0x02 0x58 Success token 0x52, 0x54

MSB of the length of data to be
read

0x00 0x58 Success token 0x52, 0x54

RSI_INT_MASK_REG_ADDR
Address to be read (LSB first)

0x00 0x58 Success token for Memory Read 0x52, 0x54

 0x00 0x58 Success token 0x52, 0x54

 0x05 0x58 Success token 0x52, 0x54

 0x41 0x58 Success token 0x52, 0x54

Dummy data 0x00 0x58 Success token 0x52, 0x54

Dummy data 0x00 0x55 Start token followed by two bytes of data 0x52, 0x54

Dummy data 0x00 0x00 LSB of the Register 0x52, 0x54

Dummy data 0x00 0x01 MSB of the Register

(0x02 – Active Low Interrupts)

0x52, 0x54

For ACTIVE HIGH INTERRUPTS, write ‘0x00’ into RSI_INT_MASK_REG_ADDR (at address 0x41050000) register of
the module.

MOSI Byte Explained

(Tx to Module)
MOSI MISO MISO Byte Explained

(Tx to Host MCU)
Other Possibilities

Memory Write 0x74 0x00 Dummy data -

8-bit Mode 0x00 0x58 Success token 0x52, 0x54

LSB of the size of the memory
into which data must be written

0x02 0x58 Success token 0x52, 0x54

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 13 | Page

– Two bytes

MSB of the size of the memory
into which data must be written

0x00 0x58 Success token 0x52, 0x54

RSI_INT_MASK_REG_ADDR
Address (LSB first)

0x00 0x58 Success token for
Memory write

command

0x52, 0x54

 0x00 0x58 Success token 0x52, 0x54

 0x05 0x58 Success token 0x52, 0x54

 0x41 0x58 Success token 0x52, 0x54

LSB to be written 0x00 0x58 Success token 0x52, 0x54

MSB to be written
(0x00 – Active High Interrupts)

0x00 0x58 Success token MSB = 0x02 – when opted for Active
low interrupts during device initialization

Write 'LOAD FIRMWARE' instruction into RSI_HOST_INTF_REG_OUT register (at address 0x4105003C) and
‘RSI_HOST_INTF_REG_IN’ register (at address 0x41050034) of the module.

MOSI Byte Explained

(Tx to Module)
MOSI MISO MISO Byte Explained

(Tx to Host MCU)
Other Possibilities

Memory Write 0x74 0x00 Dummy data -

8-bit Mode 0x00 0x58 Success token 0x52, 0x54

LSB of the size of the memory into
which data must be written – Two

bytes

0x02 0x58 Success token 0x52, 0x54

MSB of the size of the memory into
which data must be written

0x00 0x58 Success token 0x52, 0x54

RSI_HOST_INTF_REG_OUT
Address (LSB first)

0x3C 0x58 Success token for Memory write
command

0x52, 0x54

 0x00 0x58 Success token 0x52, 0x54

 0x05 0x58 Success token 0x52, 0x54

 0x41 0x58 Success token 0x52, 0x54

LSB to be written 0x00 0x58 Success token 0x52, 0x54

MSB to be written
(Write ‘0’ into

RSI_HOST_INTF_REG_OUT
Register)

0x00 0x58 Success token MSB = 0x02 – when opted
for Active low interrupts

during device initialization

Memory Write 0x74 0x00 Dummy data -

8-bit Mode 0x00 0x58 Success token 0x52, 0x54

LSB of the size of the memory into
which data must be written – Two

bytes

0x02 0x58 Success token 0x52, 0x54

MSB of the size of the memory into
which data must be written

0x00 0x58 Success token 0x52, 0x54

RSI_HOST_INTF_REG_IN Address
(LSB first)

0x34 0x58 Success token for Memory write
command

0x52, 0x54

 0x00 0x58 Success token 0x52, 0x54

 0x05 0x58 Success token 0x52, 0x54

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 14 | Page

 0x41 0x58 Success token 0x52, 0x54

LSB to be written
(Load default firmware with ACTIVE

HIGH interrupts)

0x31 0x00 Dummy data 0x71 – Load default
firmware with ACTIVE

LOW interrupts

MSB to be written
(RSI_HOST_INTERACT_REG_OUT

Register)

0xAB 0x00 Dummy data

Memory Read 0x54 0x58 Success token for memory write 0x52, 0x54

8-bit Mode 0x00 0x58 Success token 0x52, 0x54

LSB of the length of data to be read
- Two bytes

0x02 0x58 Success token 0x52, 0x54

MSB of the length of data to be read 0x00 0x58 Success token 0x52, 0x54

RSI_HOST_INTF_REG_OUT
Address (LSB first)

0x3C 0x58 Success token 0x52, 0x54

 0x00 0x58 Success token 0x52, 0x54

 0x05 0x58 Success token 0x52, 0x54

 0x41 0x58 Success token 0x52, 0x54

Dummy data 0x00 0x58 Success token 0x52, 0x54

Dummy data 0x00 0x55 Start token 0x52, 0x54

Dummy data 0x00 0xAA RSI_CHECKSUM_SUCCESS 0x23 – When valid
firmware is not present and

device initialization fails.

Dummy data 0x00 0xAB RSI_HOST_INTERACT_REG_
OUT_VALID

0x52, 0x54

• For more information on the boot results, refer to the header file,
'components/si91x/inc/sl_si91x_constants.h'.

Enabling high speed SPI

SPI transfers with clock frequencies up to 25 MHz are termed low-speed transmissions, and during these
transmissions, data is driven on the falling edge of the clock and sampled on the rising edge of the clock.
Transmissions above 25 MHz are termed high-speed transmissions, and during these transmissions, data is driven on
the rising edge of the clock and sampled on the falling edge of the clock. SiWN917 SPI interface also supports Ultra
High-Speed mode, with clock frequencies reaching up to 100 MHz. SPI initialization is done in low-speed mode. After
initialization, to enable high-speed mode, the following SPI transactions take place:

MOSI Byte Explained

(Tx to Module)
MOSI MISO MISO Byte Explained

(Tx to Host MCU)
Other Possibilities

Register Write 0x62 0x00 Dummy data

SPI Register’s address 0x08 0x58 Success token

 0x00 0x58 Success token 0x52, 0x54

Write ‘0x03’ for enabling high
speed SPI

0x03 0x00 Dummy data 0x07 – Ultra High-Speed Mode
(100 MHz)

Wait for 'CARD READY' from the module. This the first message that is read during wireless initialization.

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 15 | Page

NOTE: When an incorrect firmware is loaded onto the module, say chip version - 1.5 firmware is loaded on a 1.4
chipset, the BOARD_READY message will be sent by the module but no CARD_READY message will be sent to the
host.

The Interrupt Status Register's (ISR) value is read before performing a frame read or frame write. Whenever the
module sends data or a response to the host MCU, the register holds the value of 0x08. Whenever the host MCU
wants to send or write a command frame to the module, the register holds the value of 0x00.

MOSI Byte Explained

(Tx to Module)
MOSI MISO MISO Byte Explained

(Tx to Host MCU)
Other

Possibilities

Register Read 0x41 0x00 Dummy data -

RSI_SPI_INT_REG_ADDR Register
Address

0x00 0x58 Success token 0x52, 0x54

Dummy data 0x00 0x55 Start token

Dummy data 0x00 0x08 Module to send data to host

Pre-frame descriptor read 0x5C 0x00 Dummy data

8-bit mode 0x00 0x58 Success token 0x52, 0x54

LSB of the number of bytes to be
read (Read first 4 bytes of the pre-

frame descriptor)

0x04 0x58 Success token 0x52, 0x54

MSB of the number of bytes to be
read

0x00 0x58 Success token 0x52, 0x54

Dummy data 0x00 0x58 Success token for memory
read

0x52, 0x54

Dummy data 0x00 0x55 Start token followed by four
bytes

Dummy data 0x00 0x14 0x14 – 0x04 = 16 bytes are to
be read from the module

Dummy data 0x00 0x00

Dummy data 0x00 0x04

Dummy data 0x00 0x00

Frame Read 0x5D 0x00 Dummy data

8-bit mode 0x00 0x58 Success token 0x52, 0x54

LSB of the number of bytes to be
read

0x10 0x58 Success token 0x52, 0x54

MSB of the number of bytes to be
read

0x00 0x58 Success token 0x52, 0x54

Dummy data 0x00 0x58 Success token 0x52, 0x54

Dummy data 0x00 0x55 Start token

Dummy data 0x00 0x00 Payload length = 0

Dummy data 0x00 0x40 4 – Management Packet

Dummy data 0x00 0x89 0x89 – Command ID for CARD
READY

Dummy data 0x00 0x00

Dummy data 0x00 0x00

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 16 | Page

Dummy data 0x00 0x01

Dummy data Ten
dummy
bytes

Ten bytes of
zeros

After the 'CARD READY' message, every instruction or command is sent to the module via the 'Frame Write'
operation, and the response from the module is read via the 'Frame Read' operation. Hence, these commands are
termed Command frames.

Any command frame that is transferred between host and the module consists of 'Management frame' (which
constitutes the data payload length, management packet, and command ID) and 'data frame'. Management frames
are used to configure the Wi-Fi module to access Wi-Fi connectivity, TCP/IP stack, etc. Data frames are used to
transfer the data.

• The data payload length can be known from the nibbles – n3 n0 n1 (with n3 being the most significant nibble)
and should be retrieved in that order. For example, if the values of n0 n1 n2 n3 are 7 d 4 5 respectively, then
the data payload length is (n3 n0 n1), i.e., 0x57d (1405 bytes).

• The 'n2' nibble determines the management packet.

• Every command frame has its own command ID.

4.5 Recommendations Based on Software Configurations

• The interrupt from the module is active high, and the host must be configured to interrupt in the level-triggered
mode.

• The recommendation is to port the external interrupt GPIO Pin for interrupt status in the SPI HAL (Hardware
Abstraction Layer).

• To configure a soft reset, the user needs to map the GPIO out pins of the host to the 'reset_ext' in the GPIO
header of SiWN917.

• The user needs to send the reset sequence to the module in the function 'sl_si91x_host_power_cycle()'. For
instance, the reset sequence for EFx32 host is already present in the definition at
'wiseconnect/components/si91x/platforms/efx32'.

The following are some of the possible reasons for SPI busy (error code - 0x0054):

• A command is sent before reading the complete response to the last command.

• A received packet is not completely read but the next send command is being sent.

• The packet intended to be sent was not sent completely.

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 17 | Page

• A glitch in SPI lines.

• High speed SPI is not supported.

While porting MCU HAL, ensure the data that is sent to MCU HAL in SPI Transfer function,
'sl_si91x_host_spi_transfer()', is placed in a buffer and its address is sent. Please refer to the
'sl_si91x_host_spi_transfer()' API description for more information.

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 18 | Page

5 Summary
SPI Communication behavior is dependent on Hardware and Software. Based on the above Hardware Design, and
use case for Software Configuration, and analysis of ISSUE, a basic check can be done. HOST and SiWN917
modules should be properly interfaced to avoid data loss.

AN1432: SiWx917 NCP SPI Protocol Application Note
Version 1.0

 silabs.com | Building a more connected world. 19 | Page

http://www.silabs.com

http://www.silabs.com/

	1 Introduction
	1.1 SPI Features

	2 Prerequisites
	3 Terminology
	4 SiWN917 SPI App Note for Hardware and Software Configurations
	4.1 Description
	4.2 SPI Modes
	4.3 SPI Transactions Logic Capture
	4.4 SiWN917 SPI Logs Decoding Guide
	4.5 Recommendations Based on Software Configurations

	5 Summary

