
silabs.com | Building a more connected world. Copyright © 2024 by Silicon Laboratories Rev. 0.2

AN1438: Networked Lighting Control

Networked lighting control (NLC) systems feature an intelligent
network of individually addressable and sensor-rich luminaires
and control devices that allows each component of the system
to send and receive data. Specifically designed to meet the
scale, reliability, and security demands required in commercial
settings, Bluetooth® NLC is the only full-stack standard for
wireless lighting control. By offering standardization from the
radio through the device layer, Bluetooth® NLC enables true
multi-vendor interoperability and mass adoption of wireless
lighting control.
The Basic Lightness Controller NLC Profile specifies the requirements for a networked
lighting control (NLC) product acting as a luminaire controller in a Bluetooth mesh
system. The Basic Lightness Controller NLC Profile standardizes the use cases and
implementation patterns of luminaire controllers to help improve interoperability and
performance of systems based on Bluetooth mesh, such as NLC systems.

A common use case for the Basic Lightness Controller NLC Profile is a luminaire re-
acting to information published by occupancy and/or ambient light sensors as well as
reacting to override events (e.g., manually dimming/brightening the lights or turning
them on/off) in NLC systems.

AVAILABLE PROFILES

• Basic Lightness Controller NLC Profile
• Occupancy Sensor NLC Profile
• Ambient Light Sensor NLC Profile
• Dimming Control NLC Profile
• Basic Scene Selector NLC Profile

 AN1438: Networked Lighting Control
 Introduction

silabs.com | Building a more connected world. Rev. 0.2 | 2

1 Introduction

Part of the reason that Bluetooth technology has become such a prevalent technology in people's lives is its reliance on standards.
Through standards, the Bluetooth connections made between phones, PCs, headphones, game controllers, vehicle entertainment sys-
tems, and countless others all work because they all have built and established trust in the device profiles that initiate these connections,
and they are universally used and available.

The Bluetooth SIG is taking that to the next step with the release of their new Network Lighting Control (NLC) bundle of device profiles.
These standardized profiles will improve interoperability and scalability, simplify integration in the field, and grow the Bluetooth ecosystem.
The same Silicon Labs Bluetooth SoCs and modules that support the new feature enhancements can also support the following NLC
profiles: ambient light sensor, basic scene selector, dimming control, basic lightness controller, and occupancy sensor.

1.1 Lighting Control Device Profiles

Device profiles define which options and features of the Bluetooth Mesh specifications are mandatory for a certain kind of end product.
The first suite of mesh device profiles, collectively referred to as NLC profiles, build on Bluetooth Mesh to enable the world’s first full-
stack, multi-vendor interoperable wireless standard for wireless lighting control, Bluetooth® NLC.

1.2 NLC Profile Relationships

A device implementing the Basic Lightness Controller NLC Profile interacts with devices implementing the following NLC profiles: Occu-
pancy Sensor NLC Profile, Ambient Light Sensor NLC Profile, Dimming Control NLC Profile, Basic Scene Selector NLC Profile (see
Figure 1).

Figure 1. Interaction of a Basic Lightness Controller with other NLC Profiles

 AN1438: Networked Lighting Control
 Implementation

silabs.com | Building a more connected world. Rev. 0.2 | 3

2 Implementation

Silicon Labs provides five examples to demonstrate this feature, one for every NLC Profile (except the Energy Monitor NLC Profile). All
the examples and their main functionality logics are detailed below.

2.1 Bluetooth Mesh - NLC Basic Lightness Controller

btmesh_soc_nlc_basic_lightness_controller - This is an example of a Bluetooth Mesh application providing the functionality of the Basic
Lightness Controller NLC Profile. It demonstrates how to control a light source, an LED mounted on a mainboard, and a radio board or
similar hardware, connected to a Bluetooth Mesh network. The light source lightness can be controlled with a Generic Level Client, e.g.
another radio board running the Bluetooth Mesh - NLC Dimming Control application, or with Bluetooth Mesh smartphone application.

The device listens to messages from other NLC devices, namely Occupancy Sensor, Ambient Light Sensor, Dimming Control, and Basic
Scene Selector nodes. Only a very simple implementation is needed on the application level.

/***
 * Callback for setting Light Lightness by PWM level (0x0001 - FFFE)
 **/
void sl_btmesh_lighting_level_pwm_cb(uint16_t level)
{
 app_led_set_level(level);
}

/***
 * Callback for setting Light Color by PWM level (0x0001 - FFFE)
 **/
void sl_btmesh_lighting_color_pwm_cb(uint16_t color)
{
 app_led_set_color(color);
}

2.2 Bluetooth Mesh - NLC Basic Scene Selector

btmesh_soc_nlc_basic_scene_selector - This is an example of a Low Power Node-enabled Bluetooth Mesh application providing the
functionality of the Basic Scene Selector NLC Profile. Once the node is provisioned and a Basic Lightness Controller subscribes to the
client, the two buttons of the mainboard are used to publish the messages that will recall stored scenes on the server. The example
provides this recall functionality for scenes #1 and #2. The scene store functionality is provided by the mobile application.

Push Button presses control Basic Lightness Controllers in the network by scene recall requests. This requires the scene selection logic
to be implemented in the button handler function.

/***
 * Button press Callbacks
 **/
void app_button_press_cb(uint8_t button, uint8_t duration)
{
 (void)duration;
 char scene[SCENE_BUF_LEN];
#if SL_SIMPLE_BUTTON_COUNT == 1
 if (button == BUTTON_PRESS_BUTTON_0) {
 // Switch between scene 1 and 2
 current_scene = current_scene == 1 ? 2 : 1;
 sl_btmesh_select_scene(current_scene);
 }
#endif
#if SL_SIMPLE_BUTTON_COUNT >= 2
 // Select scene by pushed button
 current_scene = button == BUTTON_PRESS_BUTTON_0 ? 1 : 2;
 sl_btmesh_select_scene(current_scene);
#endif
 // Create unique device name using the last two bytes of the device UUID
 snprintf(scene, SCENE_BUF_LEN, "Selected scene: %d", current_scene);
 lcd_print(scene, SL_BTMESH_WSTK_LCD_ROW_CURRENT_SCENE_CFG_VAL);
}

 AN1438: Networked Lighting Control
 Implementation

silabs.com | Building a more connected world. Rev. 0.2 | 4

2.3 Bluetooth Mesh - NLC Dimming Control

btmesh_soc_nlc_dimming_control - This is an example of a Low Power Node-enabled Bluetooth Mesh application providing the function-
ality of the Dimming Control NLC Profile. Once the node is provisioned and a Basic Lightness Controller subscribes to the client, the two
buttons of the mainboard are used to publish the messages that will change the state of the Basic Lightness Controller node.

Buttons can control the following models:
• Generic On/Off Client model can turn the light on and off or toggle
• Generic Level Client model can control the light brightness

Push Button presses control Basic Lightness Controllers in the network by Generic Level Delta or Generic On/Off messages. A slightly
more complex logic is needed for the dimming in the button handler function.

/***
 * Button press Callbacks
 **/
void app_button_press_cb(uint8_t button, uint8_t duration)
{
#if SL_SIMPLE_BUTTON_COUNT == 1
 if (button == BUTTON_PRESS_BUTTON_0) {
 switch (duration) {
 // Handling of button press less than 0.25s
 case APP_BUTTON_PRESS_DURATION_SHORT: {
 sl_btmesh_generic_level_client_ext_delta_set_unack(delta);
 } break;
 // Handling of button press greater than 0.25s and less than 1s
 case APP_BUTTON_PRESS_DURATION_MEDIUM: {
 sl_btmesh_generic_level_client_ext_delta_set_unack(-delta);
 } break;
 // Handling of button press greater than 1s
 case APP_BUTTON_PRESS_DURATION_LONG:
 case APP_BUTTON_PRESS_DURATION_VERYLONG: {
 sl_btmesh_change_switch_position(SL_BTMESH_LIGHTING_CLIENT_TOGGLE);
 } break;
 default:
 break;
 }
 }
#endif
#if SL_SIMPLE_BUTTON_COUNT >= 2
 // Selecting action by duration
 switch (duration) {
 // Handling of button press less than 0.25s
 case APP_BUTTON_PRESS_DURATION_SHORT: {
 int32_t delta_set;
 delta_set = button == BUTTON_PRESS_BUTTON_0 ? -delta : delta;
 sl_btmesh_generic_level_client_ext_delta_set_unack(delta_set);
 break;
 }
 // Anything more than 0.25s
 case APP_BUTTON_PRESS_DURATION_MEDIUM:
 case APP_BUTTON_PRESS_DURATION_LONG:
 case APP_BUTTON_PRESS_DURATION_VERYLONG: {
 uint8_t on_off = button == BUTTON_PRESS_BUTTON_0 ? SL_BTMESH_LIGHTING_CLIENT_OFF :
SL_BTMESH_LIGHTING_CLIENT_ON;
 sl_btmesh_change_switch_position(on_off);
 break;
 }
 default:
 break;
 }
#endif
}

 AN1438: Networked Lighting Control
 Implementation

silabs.com | Building a more connected world. Rev. 0.2 | 5

2.4 Bluetooth Mesh - NLC Ambient Light Sensor

btmesh_soc_nlc_sensor_ambient_light - This example makes ambient light sensor measurements and forwards them to another node
implementing the Basic Lightness Controller NLC Profile.

The device measures ambient light and sends these measurements to the network. Properly configured NLC Basic Lightness Controllers
then can act on the received data. This example contains a Mock sensor logic in the button handler, in case there is no actual light sensor
present on the board, thus revealing a possible logic to implement.

/***
 * Callback for button press
 **/
void app_button_press_cb(uint8_t button, uint8_t duration)
{
 #if defined(SL_CATALOG_SENSOR_LIGHT_LUX_MOCK_PRESENT)
 float uvi;
 float lux;
 sl_status_t sc;
 sc = sl_sensor_light_get(&lux, &uvi);
 app_assert_status_f(sc, "Failed to get lux and uvi");
 #if (SL_SIMPLE_BUTTON_COUNT >= 2)
 // button pressed
 if (duration == APP_BUTTON_PRESS_DURATION_SHORT) {
 if (button == BUTTON_PRESS_BUTTON_0) {
 app_log("PB0 pressed" APP_LOG_NL);
 sl_sensor_light_set(lux - LUX_SMALL_CHANGE, uvi);
 } else if (button == BUTTON_PRESS_BUTTON_1) {
 app_log("PB1 pressed" APP_LOG_NL);
 sl_sensor_light_set(lux + LUX_SMALL_CHANGE, uvi);
 }
 } else if (duration == APP_BUTTON_PRESS_DURATION_MEDIUM) {
 if (button == BUTTON_PRESS_BUTTON_0) {
 app_log("PB0 medium pressed" APP_LOG_NL);
 sl_sensor_light_set(lux - LUX_LARGE_CHANGE, uvi);
 } else if (button == BUTTON_PRESS_BUTTON_1) {
 app_log("PB1 medium pressed" APP_LOG_NL);
 sl_sensor_light_set(lux + LUX_LARGE_CHANGE, uvi);
 }
 }
 #elif (SL_SIMPLE_BUTTON_COUNT == 1)
 (void)duration;
 if (button == BUTTON_PRESS_BUTTON_0) {
 app_log("PB0 pressed" APP_LOG_NL);
 sl_sensor_light_set(lux + LUX_LARGE_CHANGE, uvi);
 }
 #endif // SL_SIMPLE_BUTTON_COUNT
 #else
 (void)duration;
 (void)button;
 #endif // SL_CATALOG_SENSOR_LIGHT_MOCK_PRESENT
}

 AN1438: Networked Lighting Control
 Implementation

silabs.com | Building a more connected world. Rev. 0.2 | 6

2.5 Bluetooth Mesh - NLC Occupancy Sensor

btmesh_soc_nlc_sensor_occupancy – This example makes Occupancy Sensor measurements and forwards them to another node im-
plementing the Basic Lightness Controller NLC Profile. This measurement can be faked by pressing the buttons on the mainboard:

• BTN1 increases people count
• BTN0 decreases people count

In case of only one button, a shorter press increases, while a longer one decreases the people count.

Push Button presses imitate people count changes which can control a properly configured NLC Basic Lightness Controller. Here as well,
buttons simulate the increase/decrease of people, implemented in the button press handler function.

/***
 * Callback for button press
 **/
void app_button_press_cb(uint8_t button, uint8_t duration)
{
 (void)duration;
 // button pressed
 if (duration == APP_BUTTON_PRESS_DURATION_SHORT) {
 if (button == BUTTON_PRESS_BUTTON_0) {
 app_log("PB0 pressed" APP_LOG_NL);
 sl_btmesh_people_count_decrease();
 } else if (button == BUTTON_PRESS_BUTTON_1) {
 app_log("PB1 pressed" APP_LOG_NL);
 sl_btmesh_people_count_increase();
 }
 } else if (duration == APP_BUTTON_PRESS_DURATION_MEDIUM) {
 if ((button == BUTTON_PRESS_BUTTON_0)) {
 app_log("PB0 medium pressed" APP_LOG_NL);
 sl_btmesh_people_count_increase();
 }
 }
}

 AN1438: Networked Lighting Control
 Network Setup

silabs.com | Building a more connected world. Rev. 0.2 | 7

3 Network Setup

To create a demonstration network, at least five WSTK + radio boards or Thunderboards are needed, preferably ones equipped with
display, and at least one of them with light sensor for the btmesh_soc_nlc_sensor_ambient_light example and another one with RGB
LED for the btmesh_soc_nlc_basic_lightness_controller example.

3.1 Flashing

You may use the provided demo binaries or create your own project and flash it to the board with the bootloader of your choice. Doing
these should lead to the terminal outputs below:

3.1.1 Bluetooth Mesh - NLC Basic Lightness Controller

3.1.2 Bluetooth Mesh - NLC Basic Scene Selector

3.1.3 Bluetooth Mesh - NLC Dimming Control

3.1.4 Bluetooth Mesh - NLC Ambient Light Sensor

3.1.5 Bluetooth Mesh - NLC Occupancy Sensor

 AN1438: Networked Lighting Control
 Network Setup

silabs.com | Building a more connected world. Rev. 0.2 | 8

3.2 Bluetooth Mesh App

With the help of Silicon Labs’ own Bluetooth Mesh App, scan for the Nodes and start to provision them one by one into your own NLC
Mesh network.

Figure 2. Before and After the Provisioning Process

 AN1438: Networked Lighting Control
 Network Setup

silabs.com | Building a more connected world. Rev. 0.2 | 9

3.2.1 Bluetooth Mesh - NLC Basic Lightness Controller

Figure 3. Provisioning and Configuration of the NLC Basic Lightness Controller Node

3.2.2 Bluetooth Mesh - NLC Basic Scene Selector

Figure 4. Provisioning and Configuration of the NLC Basic Scene Selector Node

 AN1438: Networked Lighting Control
 Network Setup

silabs.com | Building a more connected world. Rev. 0.2 | 10

3.2.3 Bluetooth Mesh - NLC Dimming Control

Figure 5. Provisioning and Configuration of the NLC Dimming Control Node

3.2.4 Bluetooth Mesh - NLC Ambient Light Sensor

Figure 6. Provisioning and Configuration of the NLC Ambient Light Sensor Node

 AN1438: Networked Lighting Control
 Network Setup

silabs.com | Building a more connected world. Rev. 0.2 | 11

3.2.5 Bluetooth Mesh - NLC Occupancy Sensor

Figure 7. Provisioning and Configuration of the NLC Occupancy Sensor Node

3.3 Altering the Network

After the full setup, the network parameters are adjustable by changing the LC Property States, and the network can be tested by triggering
changes with the push buttons. Switching LC Mode OFF, the NLC Dimming Control Node can be used, and by switching it ON, the NLC
Ambient Light Sensor going to be active. By switching Occupancy Mode ON, the NLC Occupancy Sensor Node will take over.

Figure 8. Configuration of the Network and Node Logs

 AN1438: Networked Lighting Control
 Custom Project

silabs.com | Building a more connected world. Rev. 0.2 | 12

4 Custom Project

To create a custom NLC Profile project, you have to add the appropriate NLC component to your project, which in turn will install the
corresponding NLC Profile component. This is only valid for SoC projects. In the case of NCP, only the NLC Profile component is required.

Figure 9. Simplicity Studio 5 Component Manager

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1 Introduction
	1.1 Lighting Control Device Profiles
	1.2 NLC Profile Relationships

	2 Implementation
	2.1 Bluetooth Mesh - NLC Basic Lightness Controller
	2.2 Bluetooth Mesh - NLC Basic Scene Selector
	2.3 Bluetooth Mesh - NLC Dimming Control
	2.4 Bluetooth Mesh - NLC Ambient Light Sensor
	2.5 Bluetooth Mesh - NLC Occupancy Sensor

	3 Network Setup
	3.1 Flashing
	3.1.1 Bluetooth Mesh - NLC Basic Lightness Controller
	3.1.2 Bluetooth Mesh - NLC Basic Scene Selector
	3.1.3 Bluetooth Mesh - NLC Dimming Control
	3.1.4 Bluetooth Mesh - NLC Ambient Light Sensor
	3.1.5 Bluetooth Mesh - NLC Occupancy Sensor

	3.2 Bluetooth Mesh App
	3.2.1 Bluetooth Mesh - NLC Basic Lightness Controller
	3.2.2 Bluetooth Mesh - NLC Basic Scene Selector
	3.2.3 Bluetooth Mesh - NLC Dimming Control
	3.2.4 Bluetooth Mesh - NLC Ambient Light Sensor
	3.2.5 Bluetooth Mesh - NLC Occupancy Sensor

	3.3 Altering the Network

	4 Custom Project

