
AN1443: SiWx917 Encrypted Execute in
Place (XiP)

This application note describes the Encrypted Execute in Place
(XiP) functionality on Silicon Labs SiWx917 devices. It provides an
overview of how Encrypted XiP is implemented and details for
both enabling and configuring this feature.
For more information on prerequisites for provisioning the SiW917 for Encrypted XiP,
please refer to UG162 - Simplicity Commander Reference Guide.

KEY POINTS

• Architectural Overview of Encrypted XiP
• Operating modes
• Configuration guides
• Examples enabling Encrypted XiP

silabs.com | Building a more connected world. Copyright © 2025 by Silicon Laboratories Rev. 1.0

https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf

Table of Contents
1. Security Features. 3

1.1 Key Reference . 3

1.2 eFuse Reference . 4

1.3 Minimum Wireless Pro Kit Firmware Version . 4

2. Introduction . 5
2.1 QSPI Overview . 6

2.2 PUF Initialization . 6

3. Operating Modes . 7
3.1 AES-CTR Mode . 7

3.2 AES-CTR Configuration . 8

3.3 AES-XTS Mode . 9

3.4 AES-XTS Configuration . 9
3.4.1 AES-XTS XiP on TA Only .10
3.4.2 AES-XTS XiP on M4 Only .10
3.4.3 AES-XTS XiP on Both Cores .10

4. Updating XiP Images . 11

5. Examples . 12
5.1 Enable encrypted XiP in devices with external Flash12

5.2 Enable encrypted XiP in devices with external PSRAM13

5.3 How to ensure that PSRAM contents are encrypted13

6. Revision History . 15

silabs.com | Building a more connected world. Rev. 1.0 | 2

1. Security Features

SiWx917 offers best-in-class features to help secure your low-cost wireless product. Some of these features are interrelated and have
overlapping configuration steps. Silicon Labs offers documentation on these features to aid developers integrating SiWx917’s security
features into their product. The following table summarizes documentation available for these features:

Table 1.1. SiWx917 Security Features Documentation

Document Summary

AN1431: SiWx917 SoC Firmware
Update Application Note Describes how to perform SoC firmware updates

AN1416: SiWG917 SoC Memory
Map Application Note Describes the SiWG917 SoC Memory Map

AN1439: SiWx917 Hardware De-
bugging Guidelines Guidelines for debugging hardware relate issues with SiWx917

AN1428: SiWx917 Debug Lock How to lock and unlock SiWx917 debug access ports

AN1442: SiWx917 SoC Secure Boot
with Anti-Rollback Protection Describes the secure boot and anti-rollback protection processes on SiWx917

AN1443: Si917 Encrypted Execute
in Place Describes the encrypted execute in place (XiP) capabilities of the SiWx917

UG162: Simplicity Commander Ref-
erence Guide

Describes commands available in Simplicity Commander for activating PUF and provisioning
the intrinsic device keys for XiP

1.1 Key Reference

Encrypted XiP involves device-internal intrinsic keys and the use of public keys for authenticating firmware before allowing it to run. The
following table summarizes the cryptographic keys used for secure boot and their intended purpose:

Table 1.2. List of Public Keys Related to Encrypted XiP

Key Type Description Key Type Key size
(bits) Storage Lifetime

Master key Used for decrypting and authenticating keys used by
the NWP core

Symmetric, AES 256
Intrinsic(2) Permanent

Unwrap key Used for decrypting and authenticating keys used by
the M4 core

Symmetric, AES 256 Intrinsic(2)
Permanent

TA OTA key(1) Used to Encrypt/decrypt TA firmware OTA updates,
generate CMAC MIC

Symmetric, AES 256 Flash Permanent

TA OTA key(1) Encrypt/decrypt M4 firmware OTA updates, gener-ate
CMAC MIC

Symmetric, AES 256 Flash Permanent

TA FW key1, TA
FW key2 Encrypt/decrypt NWP firmware during XiP Symmetric, AES 128/256 Updatable Flash

M4 FW key1, M4
FW key2 Encrypt/decrypt NWP firmware during XiP Symmetric, AES 128/256 Updatable Flash

Note:
1. These keys are wrapped for tamper resistance.
2. Intrinsic keys are generated at runtime using the PUF and a 52-byte key code, stored in Flash.

AN1443: SiWx917 Encrypted Execute in Place (XiP)
Security Features

silabs.com | Building a more connected world. Rev. 1.0 | 3

https://www.silabs.com/documents/public/application-notes/an1431-siwx917-soc-firmware-update-application-note.pdf
https://www.silabs.com/documents/public/application-notes/an1431-siwx917-soc-firmware-update-application-note.pdf
https://www.silabs.com/documents/public/application-notes/an1416-siwx917-soc-memory-map.pdf
https://www.silabs.com/documents/public/application-notes/an1416-siwx917-soc-memory-map.pdf
https://www.silabs.com/documents/public/application-notes/an1439-siwx917-hardware-debugging-guidelines.pdf
https://www.silabs.com/documents/public/application-notes/an1439-siwx917-hardware-debugging-guidelines.pdf
https://www.silabs.com/documents/public/application-notes/an1428-si91x_secure_debug.pdf
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf

1.2 eFuse Reference

Encrypted XiP is configured in the SiWx917 by modifying flags, known as MBR flags. The following table lists the settings required to
enable Encrypted XiP:

Table 1.3. Master Boot Record (MBR) flags settings for encrypted XiP

eFuse Name Description

m4_encrypt_firmware 0: Disables encrypted XiP firmware on the m4 core.

1: Enables encrypted XiP firmware on the m4 core.

m4_fw_encryption_mode 1: Configures encrypted XiP in AES-CTR mode on the M4 core.

2: Configures encrypted XiP inAES-XTS mode on the M4 core.

ta_fw_encryption_mode Enables and sets encryption mode on the NWP core.

0: Disables encrypted XiP on the NWP core.

1: Enables encrypted XiP in AES-CTR mode on the NWP core.

2: Enables encrypted XiP in AES-XTS mode on the NWP core.

m4_secure_boot_enable 1: Enable M4 secure boot if encrypted XiP is required on M4.

ta_secure_boot_enable 1: Enable NWP secure boot if encrypted XiP is required on NWP

1.3 Minimum Wireless Pro Kit Firmware Version

SiWx917 is supported on Wireless Pro Kit (WPK) Mainboards after firmware version 1v5p0b240 and later. When using SiWx917 on
Silicon Labs' WPK, ensure your adapter firmware is up to date by consulting this "How to Update" guide on community.silabs.com.

AN1443: SiWx917 Encrypted Execute in Place (XiP)
Security Features

silabs.com | Building a more connected world. Rev. 1.0 | 4

https://community.silabs.com/s/article/how-to-update-the-firmware-on-your-starter-kit-board?language=en_US

2. Introduction

Execute in Place (XIP) is a technology used in computing to run software directly from long-term storage, such as a ROM or Flash
memory, without requiring that the software be copied into RAM before execution. By eliminating RAM usage, an embedded system
with XiP support can reduce memory requirements and die cost can improve power consumption in IoT devices. While XiP offers en-
hanced security, it also has drawbacks in terms of execution speed that must be considered during system design. The encryption of
flash memory content requires additional CPU cycles for decryption, leading to a decrease in execution speed by 25 to 43 %.

In SiWx917 devices, Execute in Place (XiP) refers to loading instructions from Flash memory directly via the Quad-Serial Peripheral
Interface (Quad SPI). Additionally, SiWx917 has integrated hardware AES accelerators that can decrypt XiP instructions in real-time
without the executing program being aware of the decryption process. Quad SPI is used to improve speed of execution, while an on-
the-fly hardware AES engine improves firmware confidentiality. SiWx917 supports encrypted and unencrypted XiP on both the NWP
and M4 cores in all operating modes except Radio Co-Processor (RCP) mode. Additionally, XiP can be configured independently per-
core.

Some AI/ML algorithms or applications which drive displays using Frame buffers require huge RAM. Internal RAM may not be sufficient
in such cases, so an external PSRAM of 2, 4, 8, or 16 MB can be added. If these contents are in plain form bad actors can easily
tamper with the contents of external RAM. Additionally, programs can also be configured to be executed directly from PSRAM. So, to
secure the contents of PSRAM encrypted XIP functionality can be extended to PSRAM.

As illustrated in the diagram below, M4 accesses both FLASH and PSRAM via QSPI. The NWP accesses the contents through a se-
cure AHB bridge. The QSPI controller retrieves contents from external memory, decrypts them, and places them in cache memory.

Figure 2.1. M4/NWP FLASH/PSRAM Access

For PSRAM, only AES-CTR mode with 128-bit and 256-bit key sizes is supported. Whereas for FLASH both AES-XTS and AES-CTR
modes with 128-bit and 256-bit key sizes are supported.

Note: Entire contents of FLASH/PSRAM contents are not encrypted. Areas that need to be encrypted are configurable by application
program.

AN1443: SiWx917 Encrypted Execute in Place (XiP)
Introduction

silabs.com | Building a more connected world. Rev. 1.0 | 5

2.1 QSPI Overview

Encrypted XiP is achieved on the SiWx917 through its integrated Quad SPI (QSPI) and AES engine components. The AES engine is
designed to be compliant with NIST FIPS 197 and supports two ciphering modes from NIST SP 800-38: non-chaining CTR mode and
AES-XTS.

Figure 2.2. QSPI and AES Engine Block Diagram

2.2 PUF Initialization

Both cores of the SiWx917 can be independently configured for XiP with or without encryption. To enable encrypted XiP the SiWx917
PUF token must be initialized, and a corresponding encrypted XiP intrinsic key needs to be provisioned for the given core being placed
into encrypted XiP mode.

Without provisioning the PUF, intrinsic XiP encryption keys will not be generated and XiP will not function. For more information config-
uring the PUF and provisioning device intrinsic keys, see Section 3.2.1 - Activation Code Generation for PUF Block of UG574 –
SiWx917 SoC Manufacturing Utility Users Guide – which contains sample mbr json files for configuring encrypted XiP in both operating
modes.

AN1443: SiWx917 Encrypted Execute in Place (XiP)
Introduction

silabs.com | Building a more connected world. Rev. 1.0 | 6

https://www.silabs.com/documents/public/user-guides/ug574-siwx917-soc-manufacturing-utility-user-guide.pdf#nameddest=%5B%7B%22num%22%3A25%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C34%2C252%2C0%5D
https://www.silabs.com/documents/public/user-guides/ug574-siwx917-soc-manufacturing-utility-user-guide.pdf#nameddest=%5B%7B%22num%22%3A25%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C34%2C252%2C0%5D
https://www.silabs.com/documents/public/user-guides/ug574-siwx917-soc-manufacturing-utility-user-guide.pdf#nameddest=%5B%7B%22num%22%3A25%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C34%2C252%2C0%5D

3. Operating Modes

3.1 AES-CTR Mode

The Advanced Encryption Standard Counter Mode or AES-CTR is a symmetric-key cipher that uses the AES Electronic Code Book
(AES-ECB) algorithm to encrypt a number used once and a counter that is incremented to produce a sequence of output blocks that
are combined via exclusive-or (XOR) with the plaintext to produce the ciphertext, and vice versa. Because each block can be construc-
ted independently of each other, AES-CTR mode can be parallelized for applications like XiP where high throughput is required. Addi-
tionally, because each block can be independently encrypted or decrypted, AES-CTR mode is well-suited to random access – which is
useful for XiP where many branch instructions may require accessing different blocks that are not necessarily close together. Finally,
the resultant cipher-text from any plaintext will always be the same width and does not require padding, making it suitable for data of
arbitrary length, such as an encrypted firmware executable.

Figure 3.1. AES-CTR Encryption

In AES-CTR encryption mode, the precomputed counter blocks are XORed with a block of plaintext and the results of XORed blocks
are concatenated into the final ciphertext.

Figure 3.2. AES-CTR Decryption

In decryption mode, the inverse is performed: each counter block is XORed with the ciphertext before being decrypted into correspond-
ing plaintext blocks which are concatenated into the original plaintext.

The sequence of counters must never repeat for any message under a specific key. If a counter repeats, then an attacker with a chosen
ciphertext can use that ciphertext to determine contents of other unknown ciphertexts without knowledge of the underlying encryption
key.

AN1443: SiWx917 Encrypted Execute in Place (XiP)
Operating Modes

silabs.com | Building a more connected world. Rev. 1.0 | 7

3.2 AES-CTR Configuration

A section of flash memory, known as Master Boot Record (MBR), contains important configuration information of SiWx917, such as
flash configuration, security features, peripheral configuration etc. Upon power-on, the device is configured according to the MBR (Mas-
ter Boot Record) settings. To enable XIP in various modes minimal MBR configuration JSON content is shown further.

AES-CTR XiP on NWP Only

{
 "puf_activation_code_addr": 8192,
 "efuse_data": {
 “ta_encrypt_firmware”: 1
 },
 "key_desc_table_addr": 768
}

AES-CTR XiP on M4 Only

{
 "puf_activation_code_addr": 8192,
 "efuse_data": {
 "m4_encrypt_firmware": 1,
 "m4_fw_encryption_mode": 1,
 },
 "key_desc_table_addr": 768
}

AES-CTR XiP on Both Cores

{
 "puf_activation_code_addr": 8192,
 "efuse_data": {
 “ta_encrypt_firmware”: 1,
 "m4_encrypt_firmware": 1,
 "m4_fw_encryption_mode": 1,
 },
 "key_desc_table_addr": 768
}

Note: NWP only has one field to both enable and configure encryption, while the M4 has one field to enable encryption and a separate
field to set the mode.

AN1443: SiWx917 Encrypted Execute in Place (XiP)
Operating Modes

silabs.com | Building a more connected world. Rev. 1.0 | 8

3.3 AES-XTS Mode

AES XEX-based tweaked-codebook with ciphertext stealing aka AES-XTS – is a block cipher mode of operation for AES that modifies
AES-XEX with a feature called ciphertext stealing to allow plaintexts that are at least one or more blocks of 128 bytes plus a final block
of less than 128 bytes to be encrypted and decrypted without use of padding. Ciphertext stealing works by taking a portion of the sec-
ond-to-last block’s output ciphertext, which is then blanked, and using it to fill the last block’s plaintext before encryption.

During decryption, the last block is decrypted first, recovering the partial plaintext and ‘stolen’ ciphertext, which can then be added back
into the second-to-last block before it is decrypted. AES-XTS uses two keys, one for encryption of block data and one for encryption of
the ‘tweak’ which is used to modify blocks for added security by acting similarly to a NONCE: ensuring that if the same data is encryp-
ted in two separate blocks, their resulting ciphertexts will still be different due to the tweak. In contrast to NONCE, a tweak is generated
using the flash page number and a given block’s offset within its page, so that tweak does not require extra flash storage.

Figure 3.3. AES-XTS Encryption

In AES-XTS encryption mode, the tweak is computed and XORed into the plaintext and the result is encrypted with the Block Key be-
fore being XORed with the tweak again.

Figure 3.4. AES-XTS Decryption

In AES-XTS decryption mode, the tweak is computed and XORed into the ciphertext and the result is decrypted with the Block Key
before being XORed with the tweak again.

It is important to note that while AES-XTS can preserve confidentiality – it does not ensure data integrity. It is not possible to detect that
a ciphertext has been modified from its original.

3.4 AES-XTS Configuration

The Master Boot Record of the 917 contains important configuration for the SiWx917. The efuse_data section in this file allows you to
configure the functionality of the device. For example, minimal JSON files for enabling XiP in AES-XTS mode using commander
manufacturing init appear further. The modified sections of the default JSON appear in bold type.

AN1443: SiWx917 Encrypted Execute in Place (XiP)
Operating Modes

silabs.com | Building a more connected world. Rev. 1.0 | 9

3.4.1 AES-XTS XiP on TA Only

{
 "puf_activation_code_addr": 8192,
 "efuse_data": {
 “ta_encrypt_firmware”: 2,
 “m4_secure_boot_enable”:0,
 "ta_secure_boot_enable": 1
 },
 "key_desc_table_addr": 768
}

3.4.2 AES-XTS XiP on M4 Only

{
 "puf_activation_code_addr": 8192,
 "efuse_data": {
 "m4_encrypt_firmware": 1,
 "m4_fw_encryption_mode": 2,
 “m4_secure_boot_enable”:1,
 "ta_secure_boot_enable": 0
 },
 "key_desc_table_addr": 768
}

3.4.3 AES-XTS XiP on Both Cores

{
 "puf_activation_code_addr": 8192,
 "efuse_data":
 {
 “ta_encrypt_firmware”: 2,
 "m4_encrypt_firmware": 1,
 "m4_fw_encryption_mode": 2,
 “m4_secure_boot_enable”:1,
 "ta_secure_boot_enable": 1
 },
 "key_desc_table_addr": 768
}

Note: NWP only has one field to both enable and configure encryption, while the M4 has one field to enable encryption and a separate
field to set the mode.

AN1443: SiWx917 Encrypted Execute in Place (XiP)
Operating Modes

silabs.com | Building a more connected world. Rev. 1.0 | 10

4. Updating XiP Images

Figure 4.1. OTA Encrypted Firmware Updates Saved for XiP

During firmware update for either core, the SiWx917 Bootloader checks if the encrypted XiP feature is enabled in the MBR for that core.
If enabled, the bootloader reads the firmware for that core from the download location and encrypts it with that core’s intrinsic XiP key
and then saves it at the static target location from where the firmware must execute. If the firmware image in the download location (this
encryption is done using the per-core OTA keys, which are different from the per-core XiP encryption keys), the Bootloader decrypts
firmware images for a specific core using that core’s OTA key and then again encrypts with that core’s corresponding XiP key before
saving it in the executable region. Firmware images are stored in flash based on device flash configuration. To determine where firm-
ware is stored, consult the following table for your device configuration:
Configuration Firmware Image Start Address Size

NWP 4 [MB] / 8 [MB] 0x4011000 1.871 [MB]

NWP Dual Flash 0x4011000 3.87 [MB]

NWP Optimized Common Flash 0x4011000 1.309 [MB]

M4 Common Flash 4 [MB] 0x41C1000 444 [kB]

M4 Common Flash 8 [MB] 0x4201000 2044 [kB]

M4 Common Flash 0x4201000 3004 [kB]

M4 Dual Flash 8 [MB] 0x8011000 3964 [kB]

M4 Optimized Common Flash 0x4171000 1084 [kB]

AN1443: SiWx917 Encrypted Execute in Place (XiP)
Updating XiP Images

silabs.com | Building a more connected world. Rev. 1.0 | 11

5. Examples

5.1 Enable encrypted XiP in devices with external Flash

1. Initialize PUF intrinsic keys.

commander manufacturing init --mbr default

Power Off and on the device to ensure the PUF takes effect.

2. Generate key configuration file with following command

commander util genkeyconfig --outfile keys.json --device Si917

Keys.json file will contain keys for signing the firmware image and keys for decrypting the image during OTA and keys for secure
boot.

You can generate your own keys. It is highly recommended to secure these keys. Once written, the keys remain permanently in the
device. If private keys are leaked or lost, the device can no longer be upgraded and becomes vulnerable to compromise.

Note: The keys inside keys.json are used only for encrypting, signing and MIC calculations during OTA process.Intrinsic keys
which are generated during PUF initialization are used to encrypt/decrypt FLASH contents.These keys will not be available to the
user by any means.

3. Set e-fuses as shown in 3.2 AES-CTR Configuration and 3.4 AES-XTS Configuration, write keys, and efuses into device with this
command.

commander manufacturing provision --keys keys.json --data mbrEfuses.json

Sample mbrEfuses.json file as shown below

 {
 "puf_activation_code_addr": 8192,
 "efuse_data":
 {
 "m4_encrypt_firmware": 1,
 "m4_fw_encryption_mode": 1,
 “ta_encrypt_firmware”:1,
 "m4_secure_boot_enable": 1,
 “ta_secure_boot_enable”: 1
 },
 "key_desc_table_addr": 768
 }

4. Download the latest WiseConnect SDK from Silicon labs website. WiseConnect SDK is firmware for NWP processors. Please refer
to this page for more details about WiseConnect.

5. Since secure boot is enabled, si917 device expects minimum MIC computed image. But Si917 bootloader is intelligent and flexible
enough to accept a signed, encrypted and MIC computed image to be flashed into the device.

Use following commands to encrypt, sign and compute MIC for application and NWP images.

 commander rps convert applicationSigned.rps --app applicaiton.rps --mic keys.json --encrypt keys.json --
sign keys.json
commander rps convert NWPFirmwarSigned.rps --taapp NWPFirmware.rps --mic keys.json --encrypt keys.json --
sign keys.json

6. Flash both singed and encrypted images into the device using following commands

commander rps load applicationSigned.rps -d si917
commander rps load NWPFirmwarSigned.rps -d si917

After flashing the images, the user should see their application is running.

AN1443: SiWx917 Encrypted Execute in Place (XiP)
Examples

silabs.com | Building a more connected world. Rev. 1.0 | 12

https://github.com/SiliconLabs/wiseconnect/tree/master

5.2 Enable encrypted XiP in devices with external PSRAM

As mentioned in section 2, to execute some AI/ML algorithms and to drive displays internal RAM of a chip is not sufficient. So, an exter-
nal PSRAM is added. In some cases, code is made to run from PSRAM. Since both code and data reside in external PSRAM, if
PSRAM contents are not encrypted bad actor can easily tamper the contents. So SiWx917 has a feature that encrypts code and data
while writing/updating into PSRAM and decrypts the contents back before using or executing the contents.

Note: Only configured memory regions are encrypted.

Following are the steps for enabling encrypted XiP in PSRAM.
1. Initialize PUF intrinsic keys. (This is one time process. If it is already done , no need to do again)

commander manufacturing init --mbr default

Power Off and on the device to ensure the PUF takes effect.
2. Generate key configuration file with following command. If keys are already available, this step is not required

commander util genkeyconfig --outfile keys.json --device Si917

3. Set MBR configuraiton as shown further. You can configure 4 sections of PSRAM to enable security. psram_section_start_add,
psram_section_start_add fuses contains starting and end address of section which needs to be protected.

Note: Address range must be given only in decimal format.

Use this command to update keys and efuses

commander manufacturing provision --keys keys.json --data mbr_security_PSRAM.json

Sample mbr_security_PSRAM file is shown further

{
 "puf_activation_code_addr": 8192,
 "valids":
 {
 "psram_security_segments_valid":1
 },
 "psram_section_start_add":[
 0,
 1048576,
 2097152,
 3145728
]
 "psram_section_end_add":[
 1048575,
 2097151,
 3145727,
 4194303
],
 "key_desc_table_addr": 768
}

4. Build a sample app, such as “psram_blinky” found https://github.com/SiliconLabs/wiseconnect/tree/master/exam-ples/si91x_soc/
peripheral/psram_blinky, as well as in the WiSeConnect SDK available in the Simplicity Studio IDE.

5. PFlash the signed, encrypted image and press the reset button on the WPK board. The application will run as expected.

5.3 How to ensure that PSRAM contents are encrypted

1. Take example program like “psram_driver_example” found at https://github.com/SiliconLabs/wiseconnect/tree/master/exam-ples/
si91x_soc/peripheral/psram_driver_example

2. Modify MBR flags as shown above in section 5.2.
3. Add following Snippet code in main.c after sl_si91x_psram_init() is called
4. Users can observe that data read in auto mode is same as data wrote, whereas data read in manual mode is 0. Since data needs

to be protected, data is not read in manual mode from secure sections. To know more about auto and manual mode refer to https://
docs.silabs.com/d/wiseconnect-api-reference-guide-si91x-peripherals/3.2.0/psram

AN1443: SiWx917 Encrypted Execute in Place (XiP)
Examples

silabs.com | Building a more connected world. Rev. 1.0 | 13

https://github.com/SiliconLabs/wiseconnect/tree/master/examples/si91x_soc/peripheral/psram_blinky
https://github.com/SiliconLabs/wiseconnect/tree/master/examples/si91x_soc/peripheral/psram_blinky
https://github.com/SiliconLabs/wiseconnect/tree/master/examples/si91x_soc/peripheral/psram_driver_example
https://github.com/SiliconLabs/wiseconnect/tree/master/examples/si91x_soc/peripheral/psram_driver_example
https://docs.silabs.com/d/wiseconnect-api-reference-guide-si91x-peripherals/3.2.0/psram
https://docs.silabs.com/d/wiseconnect-api-reference-guide-si91x-peripherals/3.2.0/psram

/// Auto Write to PSRAM in secure area
psram_read_address = PSRAM_BASE_ADDRESS + 0x1040000;
uint8_t* psramBufWrtPtr = (uint8_t*)psram_read_address;
for (uint32_t index = 0; index < BIT_8_READ_WRITE_LENGTH; index++) {
 psramBufWrtPtr[index] = testBuf[index];
}
DEBUGOUT("Reading back data in auto mode: \r\n");
for (size_t i = 0; i < 10; i++) {
DEBUGOUT("0x%08X 0x%02X 0x%02X",(unsigned int)&psramBufWrtPtr[i],testBuf[i],psramBufWrtPtr[i]);
DEBUGOUT("\r\n");
}
DEBUGOUT("Reading back data in manual mode: \r\n");
sl_si91x_psram_manual_read_in_blocking_mode((uint32)psramBufWrtPtr, verifyBuf, sizeof(uint8_t), 10);
for (size_t i = 0; i < 10; i++) {
DEBUGOUT("0x%08X 0x%02X 0x%02X",(unsigned int)&psramBufWrtPtr[i],testBuf[i], verifyBuf[i]);
DEBUGOUT("\r\n");
}

AN1443: SiWx917 Encrypted Execute in Place (XiP)
Examples

silabs.com | Building a more connected world. Rev. 1.0 | 14

6. Revision History

Revision 1.0

Feburary, 2025

Initial release.

AN1443: SiWx917 Encrypted Execute in Place (XiP)
Revision History

silabs.com | Building a more connected world. Rev. 1.0 | 15

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,
Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are
trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1. Security Features
	1.1 Key Reference
	1.2 eFuse Reference
	1.3 Minimum Wireless Pro Kit Firmware Version

	2. Introduction
	2.1 QSPI Overview
	2.2 PUF Initialization

	3. Operating Modes
	3.1 AES-CTR Mode
	3.2 AES-CTR Configuration
	3.3 AES-XTS Mode
	3.4 AES-XTS Configuration
	3.4.1 AES-XTS XiP on TA Only
	3.4.2 AES-XTS XiP on M4 Only
	3.4.3 AES-XTS XiP on Both Cores

	4. Updating XiP Images
	5. Examples
	5.1 Enable encrypted XiP in devices with external Flash
	5.2 Enable encrypted XiP in devices with external PSRAM
	5.3 How to ensure that PSRAM contents are encrypted

	6. Revision History

