
AN1492: Clock Manager Migration Guide

This application note provides guidelines and considerations for migrating projects that
were created using the previous clock management architecture in the Gecko SDK to
the new Clock Manager module in the Simplicity SDK.

KEY POINTS

• Oscillator and clock tree configuration
using the Clock Manager module

• CMU emlib API to Clock Manager API
replacements

• Step-by-step guide on how to migrate a
Series 2 Gecko SDK project to a Simplicity
SDK project that uses the Clock Manager
module

silabs.com | Building a more connected world. Copyright © 2024 by Silicon Laboratories Rev. 0.1

1. Device Compatibility

This application note supports multiple device families.

EFR32 Wireless Gecko Series 2 consists of:
• EFR32BG21
• EFR32MG21
• EFR32BG22
• EFR32FG22
• EFR32MG22
• EFR32FG23
• EFR32ZG23
• EFR32SG23
• EFR32BG24
• EFR32MG24
• EFR32FG25
• EFR32BG27
• EFR32MG27
• EFR32FG28
• EFR32ZG28
• EFR32SG28

EFM32 Series 2 consists of:
• EFM32PG22
• EFM32PG23
• EFM32PG28

AN1492: Clock Manager Migration Guide
Device Compatibility

silabs.com | Building a more connected world. Rev. 0.1 | 2

2. Introduction

The Clock Manager module is a new software module introduced in the Simplicity SDK (SiSDK). The Clock Manager module uses
Clock Manager APIs and consists of two software components:
• Clock Manager component: handles initialization and configuration of the oscillators and clock tree
• Clock Manager Runtime component: handles runtime processes such as clock configuration, calibration, tuning, and more

In the Gecko SDK (GSDK), clock initialization and configuration is handled by some of the Device Initialization software components.
The relevant components consist of:

• Clock initialization component: sl_device_init_clocks
• HFRCO initialization component: sl_device_init_hfrco
• HFXO initialization component: sl_device_init_hfxo
• LFRCO initialization component: sl_device_init_lfrco
• LFXO initialization component: sl_device_init_lfxo
• RFF PLL initialization component: sl_device_init_rffpll
• USB PLL initialization component: sl_device_init_usbpll

The clock initialization component automatically configures the clock tree depending on which Device Initialization components are in-
stalled. The remaining components configure and initialize the respective oscillators and PLLs. The clocks can further be configured
during runtime using the CMU emlib APIs.

When migrating a Series 2 project from the GSDK to the SiSDK:
• The Clock Manager component is not automatically installed. The clock related Device Initialization components will remain instal-

led. These components are mutually exclusive, meaning they cannot be installed at the same time. Users can manually install the
Clock Manager component via the Project Configurator in the *slcp file. Installing the Clock Manager component will automatically
uninstall the clock related Device Initialization components.

• The Clock Manager Runtime component is typically automatically installed as a dependency for other standard project software
components. Although the Clock Manager Runtime component is intended to be a replacement for the CMU emlib APIs, Clock Man-
ager APIs can be used alongside CMU emlib APIs. User calls to CMU emlib APIs are not automatically replaced with the Clock
Manager APIs when updating the SDK.

This allows users to migrate their Series 2 projects from the GSDK to the SiSDK with minimal changes. Users have the option to man-
ually migrate their project to only use the Clock Manager module. Full adoption of the Clock Manager module is recommended as future
devices will not support CMU emlib APIs nor the clock related Device Initialization components.

AN1492: Clock Manager Migration Guide
Introduction

silabs.com | Building a more connected world. Rev. 0.1 | 3

3. Initialization

The GSDK uses multiple Device Initialization components and configuration files to configure and initialize each oscillator. The Clock
Manager module consolidates the oscillator configuration and initialization into a single Clock Manager component. Oscillators are con-
figured via the Project Configurator or the CMSIS annotated configuration file, sl_clock_manager_oscillator_config.h.

Table 3.1 Initialization Substitutions on page 4 contains the CMU emlib initialization functions that can be called by the Device Initial-
ization components. The Clock Manager component combines the initialization into a single Clock Manager API.

Table 3.1. Initialization Substitutions

CMU emlib API Clock Manager API

void CMU_LFXOInit(
 const CMU_LFXOInit_TypeDef *lfxoInit)

void CMU_HFXOInit(
 const CMU_HFXOInit_TypeDef *hfxoInit)

bool CMU_DPLLLock(
 const CMU_DPLLInit_TypeDef *init)

void CMU_RFFPLLInit(
 const CMU_RFFPLL_Init_TypeDef *pllInit)

void CMU_USBPLLInit(
 const CMU_USBPLL_Init_TypeDef *pllInit)

sl_status_t sl_clock_manager_init(void)

AN1492: Clock Manager Migration Guide
Initialization

silabs.com | Building a more connected world. Rev. 0.1 | 4

4. Configuration

The clock initialization component, sl_device_init_clocks, is a Device Initialization component that generates a non-user configura-
ble clock tree during initialization. The Clock Manager component allows for user customization of the device's clock tree during initiali-
zation. The clock tree can be configured via the Project Configurator or the CMSIS annotated configuration file, sl_clock_manag-
er_tree_config.h.

There are CMU emlib API functions for setting and getting individual clock sources and dividers, but there are no equivalent Clock Man-
ager API functions to read or modify the clock tree during runtime. Instead, the clock source or divider is defined by macros in the con-
figuration file. Table 4.1 Table 2 on page 5 shows the CMU emlib APIs for configuring the clock tree and examples of the corre-
sponding Clock Manager macros, specifically for the PCLK divider and SYSCLK source.

Table 4.1. Configuration Substitutions Example

CMU emlib API Clock Manager Configuration

CMU_ClkDiv_TypeDef CMU_ClockDivGet(
 CMU_Clock_TypeDef clock)

SL_CLOCK_MANAGER_PCLK_DIVIDER

void CMU_ClockDivSet(
 CMU_Clock_TypeDef clock,
 CMU_ClkDiv_TypeDef div)

#define SL_CLOCK_MANAGER_PCLK_DIVIDER divider

void CMU_ClockSelectGet(
 CMU_Clock_TypeDef clock)

SL_CLOCK_MANAGER_SYSCLK_SOURCE

void CMU_ClockSelectSet(
 CMU_Clock_TypeDef clock,
 CMU_Select_TypeDef ref)

#define SL_CLOCK_MANAGER_SYSCLK_SOURCE source

Table 4.2 Additional Configuration Examples on page 5 shows the remaining CMU emlib APIs that do not have a corresponding
Clock Manager API function but instead have a corresponding macro configuration.

Table 4.2. Additional Configuration Examples

CMU emlib API Clock Manager Configuration

CMU_HFRCODPLLFreq_TypeDef CMU_HFRCODPLLBandGet(void) SL_CLOCK_MANAGER_HFRCO_Band

void CMU_HFRCODPLLBandSet(
 CMU_HFRCODPLLFreq_TypeDef freq)

#define SL_CLOCK_MANAGER_HFRCO_BAND freq

void CMU_LFXOPrecisionSet(
 uint16_t precision)

#define SL_CLOCK_MANAGER_LFXO_PRECISION precision

uint16_t CMU_LFXOPrecisionGet(void) SL_CLOCK_MANAGER_LFXO_PRECISION

void CMU_HFXOPrecisionSet(uint16_t precision) #define SL_CLOCK_MANAGER_HFXO_PRECISION precision

uint16_t CMU_HFXOPrecisionGet(void) SL_CLOCK_MANAGER_HFXO_PRECISION

sl_status_t CMU_HFXOCTuneSet(uint32_t ctune) #define SL_CLOCK_MANAGER_HFXO_CTUNE ctune

void CMU_LFRCOSetPrecision(
 CMU_Precision_TypeDef precision)

#define SL_CLOCK_MANAGER_LFRCO_PRECISION precision

void CMU_PCNTClockExternalSet(
 unsigned int instance,
 true)

#define SL_CLOCK_MANAGER_PCNT0CLK_SOURCE
 CMU_PCNT0CLKCTRL_CLKSEL_PCNTS0

AN1492: Clock Manager Migration Guide
Configuration

silabs.com | Building a more connected world. Rev. 0.1 | 5

CMU emlib API Clock Manager Configuration

void CMU_PCNTClockExternalSet(
 unsigned int instance,
 false)

#define SL_CLOCK_MANAGER_PCNT0CLK_SOURCE
 CMU_PCNT0CLKCTRL_CLKSEL_EM23GRPACLK

CMU_HFRCOEM23Freq_TypeDef CMU_HFRCOEM23BandGet(void) SL_CLOCK_MANAGER_HFRCOEM23_BAND

void CMU_HFRCOEM23BandSet(
 CMU_HFRCOEM23Freq_TypeDef freq)

#define SL_CLOCK_MANAGERHFRCOEM23_BAND freq

void CMU_HFXOStartCrystalSharingLeader(
 const CMU_BUFOUTLeaderInit_TypeDef
*bufoutInit,
 GPIO_Port_TypeDef port,
 unsigned int pin)

SL_CLOCK_MANAGER_HFXO_CRYSTAL_SHARING_LEADER_EN

void CMU_HFXOCrystalSharingFollowerInit(
 CMU_PRS_Status_Output_Select_TypeDef
prsStatusSelectOutput,
 unsigned int prsAsyncCh,
 GPIO_Port_TypeDef port,
 unsigned int pin)

SL_CLOCK_MANAGER_HFXO_CRYSTAL_SHARING_FOLLOWER_EN

AN1492: Clock Manager Migration Guide
Configuration

silabs.com | Building a more connected world. Rev. 0.1 | 6

5. Runtime

Table 5.1 Runtime Substitutions on page 7 contains CMU emlib runtime APIs and their equivalent Clock Manager APIs. Some CMU
emlib APIs require calls to multiple Clock Manager APIs to maintain similar functionality. Note that function arguments and return values
may be different.

Table 5.1. Runtime Substitutions

CMU emlib API Clock Manager API Notable Changes

uint32_t CMU_Calibrate(
 uint32_t cycles,
 CMU_Select_TypeDef ref)

sl_status_t
sl_clock_manager_configure_rco_calibration(
 uint32_t cycles,
 sl_clock_manager_clock_calibration_t
down_counter_selection,
 sl_clock_manager_clock_calibration_t
up_counter_selection,
 bool continuous_calibration)

sl_status_t
sl_clock_manager_start_rco_calibration(void)

sl_status_t
sl_clock_manager_get_rco_calibration_count(
 uint32_t *count)

CMU_Calibrate cali-
brates an oscillator
using the number of
HCLK cycles and a
reference clock and
returns the number of
ticks of the reference
clock. Three Clock
Manager APIs are re-
quired to replicate the
behavior of
CMU_Calibrate. The
Clock Manager API
configure_rco_cali-
bration takes in the
number of clock cy-
cles, down and up
counter selection,
and a Boolean type
that can enable con-
tinuous calibration.
Next, start_rco_cali-
bration starts the
RCO calibration.
Lastly, get_rco_cali-
bration_count re-
trieves the calibration
count value and up-
dates the count varia-
ble via call-by-refer-
ence. All three of the
Clock Manager APIs
return the status.

AN1492: Clock Manager Migration Guide
Runtime

silabs.com | Building a more connected world. Rev. 0.1 | 7

CMU emlib API Clock Manager API Notable Changes

void CMU_CalibrateConfig(
 uint32_t downCycles,
 CMU_Select_TypeDef downSel,
 CMU_Select_TypeDef upSel)

void CMU_CalibrateCont(bool enable)

sl_status_t
sl_clock_manager_configure_rco_calibration(
 uint32_t cycles,
 sl_clock_manager_clock_calibration_t
down_counter_selection,
 sl_clock_manager_clock_calibration_t
up_counter_selection,
 bool continuous_calibration)

CMU_CalibrateConfig
configures the clock
calibration by specify-
ing the number of
clock cycles and se-
lecting a down and up
counter. CMU_Cali-
brateCont enables
continuous calibration
according to the Boo-
lean argument. The
Clock Manager API
combines the two
CMU APIs and takes
in the number of
clock cycles, down
and up counter selec-
tion, and a Boolean
type that can enable
continuous calibra-
tion. Lastly, it returns
the status.

uint32_t CMU_CalibrateCountGet(void) void
sl_clock_manager_wait_rco_calibration(
 void)

sl_status_t
sl_clock_manager_get_rco_calibration_count(
 uint32_t *count)

CMU_Calibrate-
CountGet returns the
calibration count of
the UPSEL clock.
Two Clock Manager
APIs are required to
replicate the behavior
of CalibrateCountGet.
The first function
waits for RCO cali-
bration to complete
and the second func-
tion updates the
count variable via
call-by-reference and
returns the status.

void CMU_ClkOutPinConfig(
 uint32_t clkNo,
 CMU_Select_TypeDef sel,
 CMU_ClkDiv_TypeDef clkDiv,
 GPIO_Port_TypeDef port,
 unsigned int pin)

sl_status_t
sl_clock_manager_set_gpio_clock_output(
 sl_clock_manager_export_clock_source_t
export_clock_source,

sl_clock_manager_export_clock_output_select_t
output_select,
 uint16_t hfexp_divider,
 uint32_t port,
 uint32_t pin)

CMU_ClkOutPinCon-
fig configures the pin
by assigning it the
clock output number,
clock divider, and the
port and pin number.
The Clock Manager
API configures the
pin by assigning the
clock source, clock
output number, divid-
er value, and the port
and pin number. The
clock sources and
output numbers are
changed to Clock
Manager types and
the status is returned.

AN1492: Clock Manager Migration Guide
Runtime

silabs.com | Building a more connected world. Rev. 0.1 | 8

CMU emlib API Clock Manager API Notable Changes

void CMU_ClockEnable(
 CMU_Clock_TypeDef clock,
 bool enable)

sl_status_t
sl_clock_manager_enable_bus_clock(
 sl_bus_clock_t module)

sl_status_t
sl_clock_manager_disable_bus_clock(
 sl_bus_clock_t module)

CMU_ClockEnable
selects a clock and
enables it using a
Boolean type. The
Clock Manager sepa-
rates the CMU API in-
to two functions. The
Clock Manager APIs
argument is a bus
clock pointer, and it
returns the status.

uint32_t CMU_ClockFreqGet(
 CMU_Clock_TypeDef clock)

sl_status_t
sl_clock_manager_get_oscillator_frequency(
 sl_oscillator_t oscillator,
 uint32_t *frequency)

sl_status_t
sl_clock_manager_get_clock_branch_frequency(
 sl_clock_branch_t clock_branch,
 uint32_t *frequency)

CMU_ClockFreqGet
retrieves the frequen-
cy of a specified clock
and returns its value.
The Clock Manager
API separates the
CMU API into two
functions, which re-
trieves either the os-
cillator or the clock
branch frequency.
The frequency varia-
ble is then updated
via call-by-reference
and the status is re-
turned.

uint16_t CMU_HF_ClockPrecisionGet(
 CMU_Clock_TypeDef clock)

uint16_t CMU_LF_ClockPrecisionGet(
 CMU_CLock_TypeDef clock)

sl_status_t
sl_clock_manager_get_clock_branch_precision(
 sl_clock_branch_t clock_branch,
 uint16_t *precision)

The CMU API re-
trieves the precision
of either an LF or HF
clock and returns its
value. The Clock
Manager API re-
trieves the precision
of a selected clock
branch. The precision
variable is updated
via call-by-reference
and the status is re-
turned.

AN1492: Clock Manager Migration Guide
Runtime

silabs.com | Building a more connected world. Rev. 0.1 | 9

CMU emlib API Clock Manager API Notable Changes

uint32_t CMU_OscillatorTuningGet(
 CMU_Osc_TypeDef osc)

sl_status_t
sl_clock_manager_get_rc_oscillator_calibration(
 sl_oscillator_t oscillator,
 uint32_t *val)

sl_status_t
sl_clock_manager_get_hfxo_calibration(
 uint32_t *val)

sl_status_t
sl_clock_manager_get_lfxo_calibration(
 uint32_t *val)

CMU_OscillatorTu-
ningGet retrieves the
tuning frequency of
the specified oscilla-
tor and returns its val-
ue. The Clock Man-
ager API separates
the CMU API into
three functions.The
Clock Manager re-
trieves the tuning fre-
quency of the speci-
fied oscillator. The
tuning frequency vari-
able is updated via
call-by-reference and
the status is returned.
If the oscillator is the
HFXO or the LFXO,
the Clock Manager
API hfxo_calibration
or lfxo_calibration
should be used re-
spectively.

void CMU_OscillatorTuningSet(
 CMU_Osc_TypeDef osc,
 uint32_t val)

sl_status_t
sl_clock_manager_set_rc_oscillator_calibration(
 sl_oscillator_t oscillator,
 uint32_t val)

sl_status_t
sl_clock_manager_set_hfxo_calibration(
 uint32_t val)

sl_status_t
sl_clock_manager_set_lfxo_calibration(
 uint32_t val)

CMU_OscillatorTu-
ningSet sets the tun-
ing frequency of an
oscillator according to
the argument, val.
The Clock Manager
API separates the
CMU API into three
functions. The Clock
Manager sets the tun-
ing frequency of the
oscillator according to
the argument, val.
The status is then re-
turned.
If the oscillator is the
HFXO or the LFXO,
the Clock Manager
API set_hfxo_calibra-
tion or set_lfxo_cali-
bration should be
used respectively.

void CMU_CalibrateStart(void) void
sl_clock_manager_start_rco_calibration(
 void)

-

void CMU_CalibrateStop(void) void
sl_clock_manager_stop_rco_calibration(
 void)

-

uint32_t CMU_HFXOCTuneGet(void) sl_status_t
slx_clock_manager_hfxo_get_ctune(
 uint32_t *ctune)

CMU_HFXOTuneGet
returns the crystal
tuning capacitance of
the HFXO. The Clock
Manager API updates
the ctune variable via
call-by-reference and
returns the status.

AN1492: Clock Manager Migration Guide
Runtime

silabs.com | Building a more connected world. Rev. 0.1 | 10

CMU emlib API Clock Manager API Notable Changes

sl_status_t CMU_HFXOCTuneSet(
 uint32_t ctune)

sl_status_t
slx_clock_manager_hfxo_set_ctune(
 uint32_t ctune)

CMU_HFXOCTune-
Set sets the crystal
tuning capacitance of
the HFXO according
to the argument,
ctune, and returns the
status. The Clock
Manager API sets the
crystal tuning capaci-
tance of the HFXO
according to the argu-
ment, ctune, and re-
turns the status.

void
CMU_HFXOCoreBiasCurrentCalibrate(
 void)

sl_status_t
slx_clock_manager_hfxo_calibrate_ctune(
 uint32_t ctune)

The CMU API recali-
brates the HFXO’s
core bias current. A
CTUNE value can be
passed in the argu-
ment ctune to change
the value of CTUNE
before launching a
core bias current cali-
bration. If the current
ctune value is given,
only a core bias opti-
mization will be per-
formed and CTUNE
will remain un-
changed.

Table 5.2 CMU emlib APIs with No Substitutions on page 11 contains the CMU emlib APIs that have no equivalent Clock Manager
API.

Table 5.2. CMU emlib APIs with No Substitutions

CMU API

 CMU_DPLLLock
 CMU_WaitUSBPLLLock
 CMU_WaitRFFPLLLock
 CMU_DPLLUnlock
 CMU_WdogLock
 CMU_WdogUnlock
 CMU_HFXOCTuneDeltaSet
 CMU_HFXOCTuneDeltaGet
 CMU_UpdateWaitStates
 CMU_IntClear
 CMU_IntEnable
 CMU_IntGet
 CMU_IntGetEnabled
 CMU_IntSet
 CMU_Lock
 CMU_Unlock

AN1492: Clock Manager Migration Guide
Runtime

silabs.com | Building a more connected world. Rev. 0.1 | 11

6. Migration Guide

This section provides a step-by-step guide on how to migrate an existing project that uses the GSDK to using the SiSDK and the Clock
Manager module.

AN1492: Clock Manager Migration Guide
Migration Guide

silabs.com | Building a more connected world. Rev. 0.1 | 12

6.1 Installation

1. In the Gecko SDK, the installed Device Initialization software components can be found in the Project Configurator. The Device
Initialization components are located inside the sl_platform_init function which is embedded within the sl_system_init func-
tion inside the main.c file. sl_device_init_lfxo, sl_device_init_hfxo, and sl_device_init_clocks are installed in this ex-
ample project.

AN1492: Clock Manager Migration Guide
Migration Guide

silabs.com | Building a more connected world. Rev. 0.1 | 13

2. To update the SDK, open the *.slcp file and press Change Target/SDK/Generators.

3. Change the SDK to the Simplicity SDK. In this installation example, the SDK is upgraded from the Gecko SDK Suite v4.4.3 to the
Simplicity SDK Suite v2024.6.0.

AN1492: Clock Manager Migration Guide
Migration Guide

silabs.com | Building a more connected world. Rev. 0.1 | 14

4. Press Verify.

5. After the SDK update, the Clock Manager Runtime component should be automatically installed if there are dependencies in the
project. The Clock Manager Runtime component and its dependencies can be found in the *.slcp, under the Services section.

AN1492: Clock Manager Migration Guide
Migration Guide

silabs.com | Building a more connected world. Rev. 0.1 | 15

6. After the Clock Manager Runtime component has been installed, the sl_platform_init function will be updated as follows.

7. Users have the option to install the Clock Manager component.

AN1492: Clock Manager Migration Guide
Migration Guide

silabs.com | Building a more connected world. Rev. 0.1 | 16

8. After installing the Clock Manager component, sl_platform_init now calls the sl_clock_manager_init function and no longer
calls the Device Initialization components.

AN1492: Clock Manager Migration Guide
Migration Guide

silabs.com | Building a more connected world. Rev. 0.1 | 17

6.2 Configuration

1. After installation, the Clock Manager component can be configured in the *.slcp. Press Configure to open the oscillator and clock
tree settings.

AN1492: Clock Manager Migration Guide
Migration Guide

silabs.com | Building a more connected world. Rev. 0.1 | 18

2. Both the oscillators and the clock tree settings are configurable in the *.slcp.

The clock sources and dividers are configurable in the clock tree settings.

AN1492: Clock Manager Migration Guide
Migration Guide

silabs.com | Building a more connected world. Rev. 0.1 | 19

3. The CMSIS annotated configuration files can be accessed in the *.slcp by pressing View Source Files.

AN1492: Clock Manager Migration Guide
Migration Guide

silabs.com | Building a more connected world. Rev. 0.1 | 20

4. The configuration macros can be viewed and modified in the configuration files. Oscillator configuration macros can be found in
sl_clock_manager_config.h.

Clock tree configuration macros can be found in sl_clock_manager_tree_config.h.

AN1492: Clock Manager Migration Guide
Migration Guide

silabs.com | Building a more connected world. Rev. 0.1 | 21

7. Revision History

Revision 0.1

August, 2024

• Initial revision.

AN1492: Clock Manager Migration Guide
Revision History

silabs.com | Building a more connected world. Rev. 0.1 | 22

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,
Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are
trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1. Device Compatibility
	2. Introduction
	3. Initialization
	4. Configuration
	5. Runtime
	6. Migration Guide
	6.1 Installation
	6.2 Configuration

	7. Revision History

