
Wireless Gecko
EFR32FG25 Errata

This document contains information on the EFR32FG25 errata. The latest available revision of this device is revision B.

Errata that have been resolved remain documented and can be referenced for previous revisions of this device.

The device data sheet explains how to identify the chip revision, either from the package marking or electronically.

Errata effective date: December, 2022.

silabs.com | Building a more connected world. Copyright © 2022 by Silicon Laboratories Rev. 0.4

1. Errata Summary

The table below lists all known errata for the EFR32FG25 and all unresolved errata of the EFR32FG25.

Table 1.1. Errata Overview

Designator Title/Problem Workaround

Exists

Exists on Revision:

A B

CUR_E302 Extra EM1 Current if FPU is Disabled Yes X —

CUR_E303 Active Charge Pump Clock Causes High Current Yes X —

DCDC_E301 Incorrect IPVERSION Register Value Yes X X

DCDC_E302 DCDC Interrupts Block EM2/3 Entry or Cause Unexpected Wake-
up

Yes X —

ETAMPDET_E301 E-Tamper Detect Malfunction on Writes to Upper Prescaler Yes X —

EUSART_E303 EUSART Receiver Enters Lockup State when Using Low Fre-
quency IrDA Mode

Yes X X

EUSART_E304 Incorrect Stop Bits Lock Receiver Yes X X

IADC_E306 Changing Gain During a Scan Sequence Causes an Erroneous
IADC Result

Yes X X

PLL0_E301 USB PLL0 High Current Draw Causes Unreliable USB Functional-
ity

No X —

EFR32FG25 Errata
Errata Summary

silabs.com | Building a more connected world. Rev. 0.4 | 2

2. Current Errata Descriptions

2.1 DCDC_E301 – Incorrect IPVERSION Register Value

Description of Errata

The value returned by the IPVERSION register is incorrect and does not match the actual hardware implementation.

Affected Conditions / Impacts

Because the register addresses associated with the IPVERSION value do not match the actual hardware implementation:
• writes to DCDC registers will cause incorrect module behavior, and
• reads of DCDC registers will not return expected values.

Workaround

Software should use IPVERSION in conjunction with device identification data to determine the specific DCDC module implementa-
tion. Device identification can be performed by decoding the contents of the DEVINFO_PART register or by using emlib APIs, such as
SYSTEM_ChipRevisionGet() and SYSTEM_GetPartNumber().

Resolution

There is currently no resolution for this issue.

EFR32FG25 Errata
Current Errata Descriptions

silabs.com | Building a more connected world. Rev. 0.4 | 3

2.2 EUSART_E303 — EUSART Receiver Enters Lockup State when Using Low Frequency IrDA Mode

Description of Errata

When low frequency IrDA mode is enabled (EUSART_IRLFCFG_IRLFEN = 1), the receiver can block incoming traffic if it receives
either a…
• 0 if EUSART_CFG0_RXINV = 0 or
• 1 if EUSART_CFG0_RXINV = 1

…before…
• the EUSART module is enabled (EUSART_EN_EN =1),
• the receiver is enabled (EUSART_CMD_RXEN =1), and
• the write to enable the receiver (RXEN = 1) has been synchronized (EUSART_SYNCBUSY_RXEN = 0).

Affected Conditions / Impacts

Incoming traffic will be blocked at the EUSART receiver and subsequent interrupts and status flags will not be set correctly.

Workaround

EFR32FG25 Errata
Current Errata Descriptions

silabs.com | Building a more connected world. Rev. 0.4 | 4

To avoid entering the lockup state, use one of the workarounds mentioned below:
• When the receiver (RX) input is routed through the PRS:

Force the input to the IrDA demodulator to high by using the PRS before enabling EUSART. Keep it this way until the receiver has
been enabled and EUSART_CMD_RXEN bit is synchronized. See the following code sequence for an example of how to do this:

// Output logic 0 through PRS Channel that is connected to EUSART RX GPIO
PRS->ASYNC_CH[0].CTRL = PRS_ASYNC_CH_CTRL_FNSEL_LOGICAL_ZERO |
 PRS_ASYNC_CH_CTRL_SOURCESEL_GPIO | PRS_ASYNC_CH_CTRL_SIGSEL_GPIOPIN0;

// Select PRS as input to RX.
EUSART0->CFG1_SET = EUSART_CFG1_RXPRSEN;

// Enable EUSART to configure Rx
EUSART0->EN_SET = EUSART_EN_EN;

// Enable Rx
EUSART0->CMD = EUSART_CMD_RXEN;

// Wait until Rx enable is synchronized
while ((EUSART0->SYNCBUSY & EUSART_SYNCBUSY_RXEN) != 0U) {}

// Output EUSART RX pin through PRS Channel
PRS->ASYNC_CH[0].CTRL = (PRS->ASYNC_CH[0].CTRL & ~_PRS_ASYNC_CH_CTRL_FNSEL_MASK) |
 PRS_ASYNC_CH_CTRL_FNSEL_A;

Note: EUSART_CTRL_RXINV = 1 in this workaround because the receiver input must be inverted for proper IrDA RZI operation.

• When the receiver (RX) input is not routed through the PRS:

Force the input to the IrDA demodulator to high by using a GPIO pin other than the current EUSART RX pin before enabling the
EUSART. Keep it this way until the receiver has been enabled and EUSART_CMD_RXEN bit is synchronized. See the following
code sequence for an example of how to do this:

// Configure alternate GPIO (PA00) used for workaround to output 0
GPIO_PinModeSet(gpioPortA, 0, gpioModePushPull, 0);

// Route EUSART0 Rx to the alternate GPIO (PA00)
GPIO->EUSARTROUTE[0].ROUTEEN = (GPIO->EUSARTROUTE[0].ROUTEEN & ~GPIO_EUSART_ROUTEEN_RXPEN);
GPIO->EUSARTROUTE[0].RXROUTE = (gpioPortA << _GPIO_EUSART_RXROUTE_PORT_SHIFT) | (0 <<
_GPIO_EUSART_RXROUTE_PIN_SHIFT);
GPIO->EUSARTROUTE[0].ROUTEEN |= GPIO_EUSART_ROUTEEN_RXPEN;

// Enable EUSART0 to configure Rx
EUSART0->EN_SET = EUSART_EN_EN;

// Enable Rx
EUSART0->CMD = EUSART_CMD_RXEN;

// Wait until Rx enable is synchronized
while ((EUSART0->SYNCBUSY & EUSART_SYNCBUSY_RXEN) != 0U) {}

// Route EUSART Rx to EUSART_RX GPIO(EUSART_RX_PORT & EUSART_RX_PIN)
GPIO->EUSARTROUTE[0].ROUTEEN = (GPIO->EUSARTROUTE[0].ROUTEEN & ~GPIO_EUSART_ROUTEEN_RXPEN);
GPIO->EUSARTROUTE[0].RXROUTE = (EUSART_RX_PORT << _GPIO_EUSART_RXROUTE_PORT_SHIFT) | (EUSART_RX_PORT <<
_GPIO_EUSART_RXROUTE_PIN_SHIFT);
GPIO->EUSARTROUTE[0].ROUTEEN |= GPIO_EUSART_ROUTEEN_RXPEN;

// Disable alternate GPIO (PA00) used for workaround
GPIO_PinModeSet(gpioPortA, 0, gpioModeDisabled, 0);

Note: EUSART_CTRL_RXINV = 1 in this workaround because the receiver input must be inverted for proper IrDA RZI operation.

To exit the lockup state, disable the EUART and force the input to the IrDA demodulator to 1 before re-enabling the EUART by using
steps mentioned above.

Resolution

There is currently no resolution for this issue.

EFR32FG25 Errata
Current Errata Descriptions

silabs.com | Building a more connected world. Rev. 0.4 | 5

2.3 EUSART_E304 — Incorrect Stop Bits Lock Receiver

Description of Errata

When low frequency IrDA mode is enabled (EUSART_IRLFCFG_IRLFEN = 1), the receiver can block incoming traffic if it receives
either a…

• 0 if EUSART_CFG0_RXINV = 0 or
• 1 if EUSART_CFG0_RXINV = 1

…when it is expecting a stop bit.

Affected Conditions / Impacts

Incoming traffic will be blocked at the EUSART receiver. Subsequent interrupts and status flags will not be set correctly.

Workaround

EFR32FG25 Errata
Current Errata Descriptions

silabs.com | Building a more connected world. Rev. 0.4 | 6

To avoid receiver lock-up in the application firmware caused by formatting errors in the received data, change the receiver GPIO pin
routing to force the input to the IrDA demodulator to 1 for the anticipated period of time during which such data can be received.

To exit the lockup state, disable the EUSART and force the input to the IrDA demodulator to 1 before re-enabling the EUSART by
using one of the workarounds mentioned below:

• When the receiver (RX) input is routed through the PRS:

Force the input to the IrDA demodulator to high by using the PRS before enabling EUSART. Keep it this way until the receiver has
been enabled and EUSART_CMD_RXEN bit is synchronized. See the following code sequence for an example of how to do this:

// Output logic 0 through PRS Channel that is connected to EUSART RX GPIO
PRS->ASYNC_CH[0].CTRL = PRS_ASYNC_CH_CTRL_FNSEL_LOGICAL_ZERO |
 PRS_ASYNC_CH_CTRL_SOURCESEL_GPIO | PRS_ASYNC_CH_CTRL_SIGSEL_GPIOPIN0;

// Select PRS as input to Rx
EUSART0->CFG1_SET = EUSART_CFG1_RXPRSEN;

// Enable EUSART to configure Rx
EUSART0->EN_SET = EUSART_EN_EN;

// Enable Rx
EUSART0->CMD = EUSART_CMD_RXEN;

// Wait until Rx enable is synchronized
while ((EUSART0->SYNCBUSY & EUSART_SYNCBUSY_RXEN) != 0U) {}

// Output EUSART RX through PRS Channel
PRS->ASYNC_CH[0].CTRL = (PRS->ASYNC_CH[0].CTRL & ~_PRS_ASYNC_CH_CTRL_FNSEL_MASK) |
 PRS_ASYNC_CH_CTRL_FNSEL_A;

Note: EUSART_CTRL_RXINV = 1 in this workaround because the receiver input must be inverted for proper IrDA RZI operation.

• When the receiver (RX) input is not routed through the PRS:
Force the input to the IrDA demodulator to high by using a GPIO pin other than the current EUSART RX pin before enabling the
EUSART. Keep it this way until the receiver has been enabled and EUSART_CMD_RXEN bit is synchronized. See the following
code sequence for an example of how to do this:

// Configure alternate GPIO (PA00) used for workaround to output 0
GPIO_PinModeSet(gpioPortA, 0, gpioModePushPull, 0);

// Route EUSART0 Rx to the alternate GPIO (PA00)
GPIO->EUSARTROUTE[0].RXROUTE = (gpioPortA << _GPIO_EUSART_RXROUTE_PORT_SHIFT) | (0 <<
_GPIO_EUSART_RXROUTE_PIN_SHIFT);

// Enable EUSART0 to configure Rx
EUSART0->EN_SET = EUSART_EN_EN;

// Enable Rx
EUSART0->CMD = EUSART_CMD_RXEN;

// Wait until Rx enable is synchronized
while ((EUSART0->SYNCBUSY & EUSART_SYNCBUSY_RXEN) != 0U) {}

// Route EUSART Rx to EUSART_RX GPIO(EUSRT_RX_PORT & EUSART_RX_PIN)
GPIO->EUSARTROUTE[0].RXROUTE = (EUSART_RX_PORT << _GPIO_EUSART_RXROUTE_PORT_SHIFT) | (EUSART_RX_PIN <<
_GPIO_EUSART_RXROUTE_PIN_SHIFT);

// Disable alternate GPIO (PA00) used for workaround
GPIO_PinModeSet(gpioPortA, 0, gpioModeDisabled, 0);

Note: EUSART_CTRL_RXINV = 1 in this workaround because the receiver input must be inverted for proper IrDA RZI operation.

Resolution

There is currently no resolution for this issue.

EFR32FG25 Errata
Current Errata Descriptions

silabs.com | Building a more connected world. Rev. 0.4 | 7

2.4 IADC_E306 – Changing Gain During a Scan Sequence Causes an Erroneous IADC Result

Description of Errata

Differences in the ANALOGGAIN setting within multiple IADC_CFGx groups during a scan sequence introduces a transient condition
that may result in an inaccurate IADC conversion.

Affected Conditions / Impacts

The result of the IADC scan measurement may not match the expected result for the voltage present on the pin during the conversion.

Workaround

Both 1 and 2 shown below must be implemented.
1. If there is a difference in the ANALOGGAIN setting between IADC_CFGx groups during a scan sequence, the IADC_SCHEDx

clock prescaler must also change to an appropriate setting. This forces a warmup state (5 µs delay) in between ANALOGGAIN
changes. Note that the same IADC_SCHEDx clock prescaler value may be an appropriate setting for both ANALOGGAIN set-
tings, but to force the warmup delay, the IADC_SCHEDx must have different values.

2. The first and last entry of a scan group should use IADC_CFG0, which is the default configuration of the IADC at the start and
end of a scan conversion sequence. If CONFIG1 is used at the start and end of the scan group, erronous IADC results may oc-
cur.

Resolution

There is currently no resolution for this issue.

EFR32FG25 Errata
Current Errata Descriptions

silabs.com | Building a more connected world. Rev. 0.4 | 8

3. Resolved Errata Descriptions

This section contains previous errata for EFR32FG25 devices.

For errata on the latest revision, refer to the beginning of this document. The device data sheet explains how to identify chip revision,
either from package marking or electronically.

3.1 CUR_E302 – Extra EM1 Current if FPU is Disabled

Description of Errata

When the Floating Point Unit (FPU) is disabled, the on-demand Fast Startup RC Oscillator (FSRCO) remains on after an energy mode
transition from EM0 to EM1 is complete. This leads to higher current consumption in EM1.

Affected Conditions / Impacts

The enabled FSRCO increases EM1 current consumption by approximately 500 µA.

Workaround

Always enable the FPU at the beginning of code execution via the Coprocessor Access Control Register (CPACR) in the System Con-
trol Block (SCB) as shown below:

SCB->CPACR |= ((3 << 20) | (3 << 22));

Resolution

This issue is resolved on revision B devices.

3.2 CUR_E303 – Active Charge Pump Clock Causes High Current

Description of Errata

When the ACMP0, ACMP1, or IADC0 peripherals are active, the clock to the internal analog mux charge pump may also be activated,
resulting in extra supply current.

Affected Conditions / Impacts

• ACMP0 and ACMP1: The charge pump clock is activated whenever either module is enabled via the ACMPn_EN_EN bit or when
enabled by the LESENSE state machine.

• IADC0: The charge pump clock is activated when any portion of the IADC analog circuitry is on. When IADC_CTRL_WARMUP-
MODE = KEEPINSTANDBY or KEEPWARM, the clock is activated as long as the IADC is enabled via the IADC_EN_EN bit. When
IADC_CTRL_WARMUPMODE = NORMAL, the clock is activated only during warmup and conversion and will be shut down be-
tween conversions.

• The extra current is from a shared block and increases supply current by an approximate total of 25 µA when any of the above
conditions are true.

Workaround

No workaround exists to entirely eliminate the extra current. The impact of the current can be reduced by duty-cycling the peripheral.
The average system supply current increase depends on the total percentage of time the peripheral(s) is/are active. For example, if
only ACMP0 is used and enabled for 10% of the time, the average supply current increase is about 2.5 µA.

Resolution

This issue is resolved on revision B devices.

EFR32FG25 Errata
Resolved Errata Descriptions

silabs.com | Building a more connected world. Rev. 0.4 | 9

3.3 DCDC_E302 – DCDC Interrupts Block EM2/3 Entry or Cause Unexpected Wake-up

Description of Errata

Regardless of the setting of the DCDC Interrupt Enable (DCDC_IEN) register, if the DCDC interrupt is enabled in the NVIC, the
BYPSW, WARM, RUNNING, or TMAX interrupt requests can wake the device from EM2/3 or prevent it from entering EM2/3.

Affected Conditions / Impacts

The errata is limited to the BYPSW, WARM, RUNNING, or TMAX requests as reflected in the DCDC Interrupt Flag (DCDC_IF) regis-
ter, which also function as wake-up sources from EM2/3.

When the NVIC DCDC interrupt is enabled:
• If the corresponding DCDC_IEN bit for one of these interrupt requests is 1 and that condition occurs, then an interrupt will occur,

and the CPU will branch to the DCDC IRQ handler.
• If the corresponding DCDC_IEN bit for one of these interrupt requests is 0 and that condition occurs, then an interrupt will not

occur.
• If any one of these four interrupt conditions occurs, regardless of the setting of its corresponding DCDC_IEN bit, the device will

wake from EM2/3 and/or be prevented from entering EM2/3. If the corresponding IEN is 0, an interrupt will not occur even though
the EM2/3 wakeup event has occurred.

Workaround

To prevent unwanted wake-up from or blocked entry into EM2/3, disable the DCDC interrupt using NVIC_DisableIRQ(DCDC_IRQn)
before entering EM2/3 and re-enable the DCDC interrupt using NVIC_EnableIRQ(DCDC_IRQn) after EM2/3 wake-up.

Resolution

This issue is resolved on revision B devices.

3.4 ETAMPDET_E301 – E-Tamper Detect Malfunction on Writes to Upper Prescaler

Description of Errata

Writing to ETAMPDET → CLKPRESCVAL.UPPERPRESC to divide down the peripheral clock can cause the ETAMPDET peripheral
to potentially malfunction.

Affected Conditions / Impacts

Regardless of the oscillator used, writing a non-zero value to the upper prescaler (ETAMPDET → CLKPRESCVAL.UPPERPRESC)
and putting the ETAMPDET peripheral through one enable-disable-enable cycle can lead to the E-Tamper Detect module to end up in
an unrecoverable state.

Workaround

Set ETAMPDET → CLKPRESCVAL.UPPERPRESC to 0. Not writing to the upper prescaler and using a low-frequency oscillator will
lead to the module consuming additional current since it will not be possible to divide the clock down to its lowest value. To mitigate
the increased current consumption from a higher ETAMPDET peripheral clock frequency, ULFRCO should be used as the clock
source to divide the clock down to a lower frequency. Using the ULFRCO with the right lower prescaler settings will also help generate
a pseudo-random bit stream (PRBS) that is below 100 Hz.

Resolution

This issue is resolved on revision B devices.

EFR32FG25 Errata
Resolved Errata Descriptions

silabs.com | Building a more connected world. Rev. 0.4 | 10

3.5 PLL0_E301 – USB PLL0 High Current Draw Causes Unreliable USB Functionality

Description of Errata

When the PLL0 is enabled to clock the USB module, the device will draw approximately 200 µA more current than expected. Over
time, this leads to a condition in which the USB becomes non-functional because the clock appears to stop. Time to failure is depend-
ent on the DVDD voltage, with failure occurring immediately if DVDD = 3.8V, and some time later at lower DVDD voltages.

Affected Conditions / Impacts

Enabling the PLL0 causes the device to draw higher current than expected, which results in unreliable USB module functionality.
Once the device shows this failure, it cannot be recovered by lowering the DVDD voltage level.

Workaround

There is currently no workaround for this issue.

Resolution

This issue is resolved on revision B devices.

EFR32FG25 Errata
Resolved Errata Descriptions

silabs.com | Building a more connected world. Rev. 0.4 | 11

4. Revision History

Revision 0.4

December, 2022

• Added EUSART_E303 and EUSART_E304.

Revision 0.3

May, 2022

• Added CUR_E303.
• Added IADC_E306.
• Added PLL0_E301.
• Updated latest device revision to revision B.

Revision 0.2

October, 2021

• Added DCDC_E302.
• Added ETAMPDET_E301.

Revision 0.1

July, 2021
• Initial release.

EFR32FG25 Errata
Revision History

silabs.com | Building a more connected world. Rev. 0.4 | 12

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1. Errata Summary
	2. Current Errata Descriptions
	2.1 DCDC_E301 – Incorrect IPVERSION Register Value
	2.2 EUSART_E303 — EUSART Receiver Enters Lockup State when Using Low Frequency IrDA Mode
	2.3 EUSART_E304 — Incorrect Stop Bits Lock Receiver
	2.4 IADC_E306 – Changing Gain During a Scan Sequence Causes an Erroneous IADC Result

	3. Resolved Errata Descriptions
	3.1 CUR_E302 – Extra EM1 Current if FPU is Disabled
	3.2 CUR_E303 – Active Charge Pump Clock Causes High Current
	3.3 DCDC_E302 – DCDC Interrupts Block EM2/3 Entry or Cause Unexpected Wake-up
	3.4 ETAMPDET_E301 – E-Tamper Detect Malfunction on Writes to Upper Prescaler
	3.5 PLL0_E301 – USB PLL0 High Current Draw Causes Unreliable USB Functionality

	4. Revision History

