
Unboxing the MG24 and
AI/ML Foundations

May 2022 | Antonio Trujillo Rojas

2

Agenda

1 xG24 Overview and xG24-DK2601B dev kit

2

3

4

Low-power peripherals and MVP (AI/ML

accelerator)

Introductory concepts to AI/ML

Simplicity Studio v5

Lab session5

An Overview of the
EFR32xG24 & Dev
Kit
High Performance, Low-Power and Secure 2.4
GHz Wireless SoC

High Performance Radio

-Up to +19.5 dBm TX

-97.6 dBm RX @ BLE 1 Mbps

-105.7 dBm RX @ BLE 125 kbps

-104.5 dBm RX @ 15.4

Improved Wi-Fi Coexistence

RX Antenna Diversity

Low Power

5.0 mA TX @ 0 dBm

19.1 mA TX @ +10 dBm

4.4 mA RX (BLE 1 Mbps)

5.1 mA RX (15.4)

33.4 µA/MHz

1.3 µA EM2 with 16 kB RAM

World Class Software

Simplicity Studio 5

Matter1

Thread1

Zigbee1

Bluetooth (1M/2M/LR)

Bluetooth mesh

Dynamic multiprotocol1

Proprietary

BG24 and MG24: Optimized for Battery Powered IoT Mesh Devices

ARM® Cortex®-M33

78 MHz (FPU and DSP)

Trustzone®

Up to 1536kB of Flash

Up to 256kB of RAM

Dedicated Security Core

Secure Vault™ - Mid

Secure Vault™ - High

Low-power Peripherals

EUSART, USART, I2C

20-bit ADC, 12-bit VDAC, ACMP

Temperature sensor +/- 1.5°C

32kHz, 500ppm LFRCO

AI/ML

AI/ML Hardware Accelerator

SoCs and Modules

5x5 QFN40 (26 GPIO) -125ºC

6x6 QFN48 (28/32 GPIO) -125ºC

7x7 SiP Module (+10 dBm)

12.9x15.0 PCB Module (+10 dBm)

Sensing at
the Edge

Low-Power SoCs and Modules Optimized

for Battery Powered IoT Mesh Devices

4

AI/ML Hardware Accelerator Key Features

- Optimized Matrix processor to accelerate

ML inferencing with a lot of processing

power offloading the CPU

- Real and complex data

- 2x to 4x faster inferencing over Cortex-M

- Up to 6x lower power for inferencing

1Requires MG24

xG24-DK2601B Dev Kit: a Powerful Prototyping Platform

Features

• EFR32MG24B310F1536I
M48

▸ 1536 kB Flash and 256 kB
RAM

• Wireless SoC with multi-
protocol radio

Advanced Features

• AI/ML Hardware
Accelerator - MVP

• 20-bit ADC

Broad Range of Sensors

• I2C

▸ RHT Sensor (Si7021)

▸ Hall-effect Sensor (Si7210)

▸ Pressure Sensor (BMP384)

▸ Ambient Light Sensor
(VEML6035)

• SPI

▸ 6-axis IMU (ICM-20689)

• I2S

▸ 2x MEMS Digital
Microphones (ICS-43434)

Connectors:

• Breakout pads

• QWIIC connector

• External battery connector

• Coin Cell battery Holder

• Mini-Simplicity connector

• Micro USB (power, vcom,
debug, PTI)

User Interface

• RGB LED and Push
Buttons

• SPI flash

• U.FL connector for
dedicated iADC input

• Precise External VREF
for iADC – 1.25v ± 0.12%
(ADR1581)

5

CR2032 Coin Cell

Holder

On-board USB

J-Link Debugger
Microphone Microphone

2.4 GHz

Chip Antenna Reset Button

Hall Effect

Sensor

Ambient

Light Sensor

Mini Simplicity

Connector

Pressure

Sensor

RHT

Sensor

ADC (U.FL)

Input

QWIIC

Connector

IMU

Sensor

RGB LED

External

Battery

Connector

Button 1 Button 0

USB Micro-B

Virtual COM port

Debug Access

Packet Trace

20-pin

Expansion

Header

SPI flash

xG24 Low-Power
Peripherals and
MVP (AI/ML
Accelerator)

xG24 Block Diagram

7

Memory

1536 kB Flash

256 kB RAM

AI/ML

Matrix Vector

Processor

(AoX/AI-ML)

32-bit Bus

Peripheral Reflex System

Clock Management

HF Crystal

Oscillator

HF RC

Oscillator

Fast Startup

RC Osc

LF RC

Oscillator

LF Crystal

Oscillator

Ultra LF RF

Oscillator

EM4
Shutoff

EM1
Sleep

EM0
Run

EM2
Deep

Sleep

EM3
Stop

F
e
a
tu

re
a
v

a
ila

b
le

d
o

w
n

to
E

n
e
rg

y
M

o
d

e

Power

Mgmt

Brown-out

Detector

Power-on-

Reset

Voltage

Regulator

DC-DC

DC-DC

Converter

Security

Crypto Acc,

TRNG

DPA

countermeasures

Secure debug

authentication

Secure Engine

GPIO

Up to

32

GPIO

GPIO

Wakeup

Radio

2.4 GHz
(G)FSK/OQP
SK

M0+ Radio

Controller

0,10,20

dBm PA

Antenna

Diversity

Wi-Fi

Coexistence

Serial Interfaces

1x

USART

1x I2C

1x

EUSART

1x I2C

1x

EUSART

Timers and Triggers

5x Timer/

Counter

Low Energy

Timer

SYSRTC 2x

Watchdog

Backup RTC Pulse

Counter

Analog Modules

12,16,20 bit

resolution

IADC

2x Analog

Comparator

2x VDAC Temp

Sensor

I/O Sys

External

Interrupt

KEYSCAN

Pin Reset/

Wakeup

ABUS

DBUS

CPU

ARM Cortex-

M33 (DSP,

FPU & TZ)

LDMA

Debug

Interface

xG24 Low-Power Peripherals

▪ LFRCO

• Integrated fast start-up RC oscillator

• Precision mode

▸ ± 500 ppm accuracy (self calibrating vs HFXO)

▸ Available in EM2

▸ Target: BLE apps with no LFXO (reduce BOM cost)

○ Further details: docs.silabs.com

▪ Serial communication

• EUSART

▸ Asynchronous (UART, IrDA)

○ Wake from EM2 on special frame, RX timeout or watermark level in FIFO

○ LDMA transfer (EM1) on watermark level in FIFO

○ Max baud rate in low-energy mode 9600

▸ Synchronous (SPI)

○ Secondary mode only

○ Wake or LDMA transfer (EM1) on watermark level in FIFO

○ Down to EM3

○ Maximum clock speed 10 MHz

▸ Low energy mode available in EUSART0

• I2C

▸ Wake from EM3 on address recognition

▸ LDMA transfers supported

8

https://docs.silabs.com/bluetooth/3.1/general/system-and-performance/using-the-precision-lfrco-as-lowfrequency-clock-source#using-the-lfrco-as-lowfrequency-clock-source

xG24 Low-Power Peripherals - Continued

▪ Low-Energy timers:

• SYSRTC

▸ 32-bit length

▸ Available in EM3

▸ Shared between cores (Each core has separate CC channel groups)

▸ Replaces RTCC and PRORTC

• BURTC

▸ 32-bit length

▸ Available in EM4 (ULFRCO)

▸ Single compare channel

• LETIMER

▸ 24-bit length

▸ Available in EM3

▸ 2 compare channels and PWM output

▪ PRS

• Interconnect peripherals: “Producers” to “consumers”

• Trigger peripheral operation autonomously

• Logic operations on asynchronous channels (AND, OR, XOR…)

• Available in EM3

▪ LDMA

• Memory ↔ peripheral, Memory ↔ Memory, Peripheral ↔
Peripheral

• Linked descriptors

• Available in EM2/3 (Transfers occur in EM1)

9

xG24 Low-Power Peripherals - iADC 12-16 & 20 Bit Resolution

▪ Normal Mode

• 12-bit output resolution, 11.7 ENOB @ 1 Msps (OSR = 2)

• 16-bit output resolution, 14.3 ENOB @ 76.9 ksps (OSR = 32)

▪ High-Speed Mode – Double speed, Similar Performance

• 12-bit output resolution, 11.7 ENOB @ 2 Msps (OSR =2)

• 16-bit output resolution, 14.3 ENOB @ 153.8 ksps (OSR = 32)

▪ High-Accuracy Mode – Highest performance

• Dedicated inputs for full performance across temperature

▸ VREFN, VREFP, AIN0-3

• 20-bit output resolution, 15 ENOB @ 15.3 ksps (OSR = 64)

• 20-bit output resolution, 16 ENOB @ 3.8 ksps (OSR = 256)

10

Effective Number of Bits, External VREF

Oversampling Ratio (OSR) increases resolution and performance in all modes

EFR32XG24

(MVP)

MVP – Matrix Vector Processor (AI/ML Hardware Accelerator)

AI/ML Hardware Accelerator enables efficient Edge ML inferencing

Benefits of processing

AI/ML in device

▪ Lower power

▪ Save Bandwidth

▪ Lower Latency

▪ Ensure Privacy

▪ Higher Security

▪ Lower Cost

Use Cases for AI/ML

▪ Timeseries data on ADC or GPIO

▪ Audio mic array with beamforming

▪ Audio mic input with Audio Front End, DSP

▪ Image capture (incl. fingerprint reader)

Sensors

Acceleration,

Temperature,

Current/Voltage

Microphones

Analog or Digital

Event Detection

Camera

Low resolution

imaging

AI/ML Hardware Accelerator Key Features

- Optimized Matrix processor to accelerate

ML inferencing with a lot of processing

power offloading the CPU

- Real and complex data

- 2x to 4x faster inferencing over Cortex-M

- Up to 6x lower power for inferencing

© 2021 Silicon Laboratories Inc.11

Further Peripheral Information

▪ EFR32xG24 reference manual

• Detailed information on peripheral operation

• Details about peripheral registers

▪ EFR32MG24 / BG24 datasheet

• Details regarding GPIO pinout

• Details regarding peripherals available in different

OPN

• Details about peripheral functions available in each

GPIO port

▪ Peripheral examples GitHub repository

• Examples demonstrating functionalities of different

peripherals

• EMLIB based

12

https://www.silabs.com/documents/public/reference-manuals/efr32xg24-rm.pdf
https://www.silabs.com/documents/public/data-sheets/efr32mg24-datasheet.pdf
https://www.silabs.com/documents/public/data-sheets/efr32bg24-datasheet.pdf
https://github.com/SiliconLabs/peripheral_examples

Introductory
Concepts to AI/ML

Machine Learning in a Nutshell

14

▪ Classical Machine Learning

• Using training data in an automated process to
adjust algorithms

• Linear regression, support vector machines etc

▪ Neural Networks

• Networks of basic operators mimicing the brain’s
neurons

• Training adjusts operators so network gives
expected result for a given input

▪ Inference

• Using a trained model to process new data

▪ Common usecases

• Supervised learning (e.g., Classification)

▸ Labeled dataset

▸ Classifying new input data to one of the classes the
model was trained with

• Unsupervised learning (e.g Anomaly detection)

▸ No labelled data

▸ Trained on “normal operation” dataset

▸ Inference detects anomalies in input data that are very
different from the “normal operation” dataset it is trained
for

Cat
Not

Neural Networks on Embedded Devices

15

Model

Development /

Training /

Validation

Training

Data

Embedded

Development

New data

ML

Model

Embedded Inference Application
Inference

result

▪ Model trained on PC/server

• Very resource demanding

• Training data set used as input

▸ Preprocessed raw data for feature extraction

▪ Trained model (flatbuffer) deployed to

embedded target

• Used to run inference on new data

• Normally no further training is done on target

due to power/resource constraints

▪ ML model is the connection point

• Data science / ML domain

• Embedded software domain

▪ Exact same pre-processing used on data

in training must be applied in the

embedded application

Data

science / ML

Embedded

software

Artificial Intelligence(AI) and Machine Learning(ML) at the Tiny Edge

16

Signal processing (time series low-

rate)

• Predictive/Preventative Maintenance

• Bio-signal analysis (healthcare and medical)

e.g., pulse detection, EKG

• Cold chain monitoring

• Accelerometer use-cases e.g., fall detection,

pedometer, step counting

• Battery monitoring

• Agricultural use-cases e.g., moisture sensing

• Anomaly detection

Audio pattern matching

• Security applications e.g., Glass

break, scream, shot detection

• Cough detection

• Machine malfunction detection

• Breath monitoring

Voice commands

• 10 words command set for

smart appliance

• Wake-word detection (Always-

On voice)

• Smart device voice control

• Voice assistant

Low-resolution vision

• Wake-up on object detection

• Presence detection

• People counting, people-flow counting

• Movement detection

• Fingerprint

Low

Latency

Privacy,

IP Protection,

Security

Bandwidth

Constraints

Offline

Mode

Operation

Cost

Reduction

▪ Key benefits

• Ever-increasing demand for integrated solutions

• Battery powered devices need lower power consumption

• Small form factor requirements for size constraint devices

• Data never leaves device: more secure

Power

Consumption

ML Applications at the Tiny Edge with Silicon Labs Series 1, Series 2 Wireless SoCs

Sensor Audio Voice Vision

Machine Learning Tools for
Development in EFR32

• 3rd party tools

• End-to-end solutions

• From data gathering to model generation

• Python based

• From data processing to model

generation

• Tools for model performance evaluation

• Preprocessing tools equivalent to those in

GSDK

• GSDK integration of TensorFlow lite for

microcontrollers

• Reference, optimized and acceleration

kernels

• Model should be created offline

Software and Tool Support for ML Applications

18

E N D - T O - E N D D E V E L O P M E N T T O O L S S I L I C O N L AB S M LT K T E N S O R F L O W L I T E M I C R O

edgeimpulse.com

sensiml.com

Cortex
M

NPU

CMSIS-NN
Kernels

Silicon Labs
HW-based

Kernels

TF
Li

te
-m

ic
ro

 In
te

rp
re

te
r

2

Si
lic

o
n

 L
ab

s
Li

b
ra

ry
 1

Inferencing on target platform

TFLite
Flatbuffer

docs.silabs.com

MLTK docs

micro.ai

Machine Learning Toolkit

https://edgeimpulse.com/
https://sensiml.com/
https://docs.silabs.com/gecko-platform/latest/machine-learning/tensorflow/overview
https://siliconlabs.github.io/mltk/
https://www.micro.ai/

TensorFlow Lite Micro in the Gecko SDK

▪ C-array generated from model

flatbuffer (.tflite)

▪ Interpreted at run-time

▪ Kernels execute each layer of

the model graph

▪ 3 layers of kernels

• Reference kernels

▸ CPU agnostic code

▸ Slow

• Optimized kernels

▸ Tailored for CPU

▸ E.g., using ARM SIMD instructions

▸ Faster

• Accelerated kernels

▸ E.g., running on the xG24 Matrix

Vector Processor

▸ Fastest (2-3 times faster than

optimized kernels)

19

MVP

MVP Driver

Accelerated

Kernels
Optimized Kernels

(CMSIS-NN)

Cortex-MGeneric CPU

Reference

Kernels

Model (.tflite)

TFLM Interpreter

Embedded Development with Machine Learning (Supervised)

20

Integrate

Model

Develop (wireless)

embedded application

Test

& Run

Test Model ConvertCreate Data Set Train Model

There are 3 workflow options depending on level of Machine Learning experience, and implementation flexibility desired

M
L
 E

x
p

e
ri
e

n
c
e

F
le

x
ib

ili
ty

in
c
re

a
s
in

g

3rd Party – GUI, cloud, end-to-end
ML Explorer

(End-to-End)

Silicon Labs MLTK (open source, self-serve, community support, as-is)

ML Expert

Bring your Own

Data (BYOD)

Model Profiler
(from MLTK)

ML Expert

Bring your Own

Model (BYOM)

Simplicity Studio v5
Programming Model and Software
Components

SSv5 Architecture Concepts and Programming Model

▪ Gecko Platform

• Software catalogue

• Presented as software components

▪ Project Configurator

• Manage software components and

access to other GUI tools

▸ Component Editor

▸ Pin Tool

▸ GATT Configurator

▸ Radio Configurator

HW/SW

initialization

Periodic

action

processing

Power

managementIRQ

In main.c

sl_system_init()

app_init()

In app.c In custom code

Custom

initializations

sl_system_process

_action()

app_process_action()
Custom app tick

process routines

sl_power_manager

_sleep()

SDK Programming model

SSv5 Software Components

▪ Software Components

• Added through the Project configurator

• Install, uninstall, configure and instantiate

• Automatically add source, header and autogen code

▪ External Device Drivers (multiple)

• APIs for Silabs and 3rd party devices

• Development kit sensors

▪ Board Control

• Enable/disable development kit features

▪ Sleep Timer

• Software timers based on low-frequency hardware timers

▪ Power Manager

• Mange the system energy modes

23

▪ Detailed information

• docs.silabs.com – Gecko Platform

https://docs.silabs.com/gecko-platform/4.0/hardware-driver/api/modules
https://docs.silabs.com/gecko-platform/4.0/hardware-board/api/group-board-control
https://docs.silabs.com/gecko-platform/4.0/service/api/group-sleeptimer
https://docs.silabs.com/gecko-platform/4.0/service/api/group-power-manager
https://docs.silabs.com/gecko-platform/4.0/index

Lab session

Lab Introduction

▪ Objective: Create a bare-metal application for

sensor data collection using the xG24 dev kit,

Simplicity Studio v5 and the Gecko Platform.

25

▪ Requirements

• Hardware:

▸ EFR32xG24 Dev Kit xG24-DK2601B (BRD2601B)

▸ Micro-USB to USB Type-A cable

▸ (Optional) WSTK BRD4001A or WSTK PRO BRD4002A

• Software

▸ Simplicity Studio v5

▸ Gecko SDK Suite 4.0.2 or later

▸ Accompanying lab source code

Creating and configuring

a bare-metal project

Lab Sections

Integrating the custom

application code

Interpreting the

application code

Testing the application

and energy profiler

measurements

26

S TA G E 1 S TA G E 2 S TA G E 3 S TA G E 4

main.c

main loop

Interpreting the Application

27

app.c

sl_system_init()

app_init()

sl_system_process_action()

app_process_action()

sl_power_manager_sleep()

main.c

main loop

Interpreting the Application

28

app.c

sl_system_init()

Hardware / software

component and board

initialization

app_init()
Voltage scaling, sensor

“collectors” initialization

sl_system_process_action()

Stack software

components processing

(not used in this

application)

app_process_action() Application “tick” function

sl_power_manager_sleep()

Allow the application to

go to lowest possible

energy mode

(EM1/EM2) and WFI

main.c

main loop

Interpreting the Application

29

app.c

sl_system_init()

Hardware / software

component and board

initialization

app_init()
Voltage scaling, sensor

“collectors” initialization

sl_system_process_action()

Stack software

components processing

(not used in this

application)

app_process_action() Application “tick” function

sl_power_manager_sleep()

Allow the application to

go to lowest possible

energy mode

(EM1/EM2) and WFI

Check if “collectors”

data is ready and pass

to application. Update

flow control variables

verify_sensors_data_ready()

start_new_cycle?

YES

NO

app_rht_collector.c

app_mic_collector.c

app_imu_collector.c

main.c

main loop

Interpreting the Application

30

app.c

sl_system_init()

Hardware / software

component and board

initialization

app_init()
Voltage scaling, sensor

“collectors” initialization

sl_system_process_action()

Stack software

components processing

(not used in this

application)

app_process_action() Application “tick” function

sl_power_manager_sleep()

Allow the application to

go to lowest possible

energy mode

(EM1/EM2) and WFI

Check if “collectors”

data is ready and pass

to application. Update

flow control variables

verify_sensors_data_ready()

Schedule next sensor

measurement cycle
sensor_measurement_delay()

Process captured

data. E.g., print
dispatch_sensor_data()

Schedule new data

capturing from

“collectors”
schedule_sensor_data_collection()

start_new_cycle?

YES

NO

Closing thoughts

▪ Energy profiler

• In data gathering applications consider

the following 5 factors:

▸ Latency

▸ Number of samples collected

▸ Sampling frequency

▸ Number of sensor sources

▸ Data processing

• Finish early, sleep early

31

▪ Application limitations:

• No check to verify if the data was fully collected

• No timed method to acquire RHT data

▸ Could be implemented with sleep timer

• Software components are not 100% efficient, e.g:

▸ I2S microphone: Captures and discards 4096 samples BEFORE getting the

requested samples

▸ IO STREAM: Interrupt-based instead of LDMA based

▸ I2CSPM: Polled vs interrupt or LDMA

• Powering on-board sensors requires GPIO

▸ Slight consumption increase in EM2

• I2C sensors are powered through the same enable signal

