

Unboxing the MG24 and AI/ML Foundations

May 2022 | Antonio Trujillo Rojas

Agenda

- xG24 Overview and xG24-DK2601B dev kit
- 2 Low-power peripherals and MVP (AI/ML accelerator)
- **3** Introductory concepts to AI/ML
 - Simplicity Studio v5

5 Lab session

1

4

An Overview of the EFR32xG24 & Dev Kit

High Performance, Low-Power and Secure 2.4 GHz Wireless SoC

BG24 and MG24: Optimized for Battery Powered IoT Mesh Devices

Sensing at the Edge

AI/ML Hardware Accelerator Key Features

- Optimized Matrix processor to accelerate ML inferencing with a lot of processing power offloading the CPU
- Real and complex data
- 2x to 4x faster inferencing over Cortex-M
- Up to 6x lower power for inferencing

SILICON LABS

Low-Power SoCs and Modules Optimized for Battery Powered IoT Mesh Devices

High Performance Radio

-Up to +19.5 dBm TX -97.6 dBm RX @ BLE 1 Mbps -105.7 dBm RX @ BLE 125 kbps -104.5 dBm RX @ 15.4 Improved Wi-Fi Coexistence RX Antenna Diversity

Low Power

5.0 mA TX @ 0 dBm 19.1 mA TX @ +10 dBm 4.4 mA RX (BLE 1 Mbps) 5.1 mA RX (15.4) 33.4 μA/MHz 1.3 μA EM2 with 16 kB RAM

World Class Software Simplicity Studio 5

Matter¹ Thread¹ Zigbee¹ Bluetooth (1M/2M/LR) Bluetooth mesh Dynamic multiprotocol¹

Proprietary

ARM® Cortex®-M33 78 MHz (FPU and DSP) Trustzone® Up to 1536kB of Flash Up to 256kB of RAM

Dedicated Security Core Secure Vault™ - Mid Secure Vault™ - High

Low-power Peripherals EUSART, USART, I2C 20-bit ADC, 12-bit VDAC, ACMP Temperature sensor +/- 1.5°C 32kHz, 500ppm LFRCO

AI/ML

AI/ML Hardware Accelerator

SoCs and Modules

5x5 QFN40 (26 GPIO) -125°C 6x6 QFN48 (28/32 GPIO) -125°C 7x7 SiP Module (+10 dBm) 12.9x15.0 PCB Module (+10 dBm)

¹Requires MG24

xG24-DK2601B Dev Kit: a Powerful Prototyping Platform

Features

- EFR32MG24B310F1536I M48
 - 1536 kB Flash and 256 kB RAM
- Wireless SoC with multiprotocol radio

Advanced Features

- AI/ML Hardware Accelerator - MVP
- 20-bit ADC

Broad Range of Sensors

- I2C
 - RHT Sensor (Si7021)
 - Hall-effect Sensor (Si7210)
 - Pressure Sensor (*BMP384*)
 - Ambient Light Sensor (VEML6035)
- SPI
 - ▶ 6-axis IMU (*ICM-20689*)

• I2S

 2x MEMS Digital Microphones (ICS-43434)

Connectors:

- Breakout pads
- QWIIC connector
- External battery connector
- Coin Cell battery Holder
- Mini-Simplicity connector
- Micro USB (power, vcom, debug, PTI)

User Interface

- RGB LED and Push Buttons
- SPI flash
- U.FL connector for dedicated iADC input
- Precise External VREF for iADC – 1.25v ± 0.12% (ADR1581)

xG24 Low-Power Peripherals and MVP (AI/ML Accelerator)

xG24 Block Diagram

xG24 Low-Power Peripherals

LFRCO

- · Integrated fast start-up RC oscillator
- Precision mode
 - ± 500 ppm accuracy (self calibrating vs HFXO)
 - Available in EM2
 - Target: BLE apps with no LFXO (reduce BOM cost)
 - Further details: <u>docs.silabs.com</u>

Serial communication

- EUSART
 - Asynchronous (UART, IrDA)
 - Wake from EM2 on special frame, RX timeout or watermark level in FIFO
 - LDMA transfer (EM1) on watermark level in FIFO
 - Max baud rate in low-energy mode 9600
 - Synchronous (SPI)
 - Secondary mode only
 - Wake or LDMA transfer (EM1) on watermark level in FIFO
 - Down to EM3
 - Maximum clock speed 10 MHz
 - Low energy mode available in EUSART0
- I2C
 - Wake from EM3 on address recognition
 - LDMA transfers supported

xG24 Low-Power Peripherals - Continued

Low-Energy timers:

- SYSRTC
 - 32-bit length
 - Available in EM3
 - Shared between cores (Each core has separate CC channel groups)
 - Replaces RTCC and PRORTC
- BURTC
 - 32-bit length
 - Available in EM4 (ULFRCO)
 - Single compare channel
- LETIMER
 - 24-bit length
 - Available in EM3
 - 2 compare channels and PWM output
- PRS
 - Interconnect peripherals: "Producers" to "consumers"
 - Trigger peripheral operation autonomously
 - Logic operations on asynchronous channels (AND, OR, XOR...)
 - Available in EM3
- LDMA
 - Memory → peripheral, Memory → Memory, Peripheral →
 - Linked descriptors
 - Available in EM2/3 (Transfers occur in EM1)

xG24 Low-Power Peripherals - iADC 12-16 & 20 Bit Resolution

Normal Mode

- 12-bit output resolution, 11.7 ENOB @ 1 Msps (OSR = 2)
- 16-bit output resolution, 14.3 ENOB @ 76.9 ksps (OSR = 32)
- High-Speed Mode Double speed, Similar Performance
 - 12-bit output resolution, 11.7 ENOB @ 2 Msps (OSR =2)
 - 16-bit output resolution, 14.3 ENOB @ 153.8 ksps (OSR = 32)

High-Accuracy Mode – Highest performance

- Dedicated inputs for full performance across temperature
 - ► VREFN, VREFP, AIN0-3
- 20-bit output resolution, 15 ENOB @ 15.3 ksps (OSR = 64)
- 20-bit output resolution, 16 ENOB @ 3.8 ksps (OSR = 256)

Effective Number of Bits, External VREF

Oversampling Ratio (OSR) increases resolution and performance in all modes

MVP – Matrix Vector Processor (AI/ML Hardware Accelerator)

AI/ML Hardware Accelerator enables efficient Edge ML inferencing

Further Peripheral Information

EFR32xG24 reference manual

- Detailed information on peripheral operation
- · Details about peripheral registers
- EFR32MG24 / BG24 datasheet
 - Details regarding GPIO pinout
 - Details regarding peripherals available in different OPN
 - Details about peripheral functions available in each GPIO port
- Peripheral examples GitHub repository
 - Examples demonstrating functionalities of different peripherals
 - EMLIB based

Introductory Concepts to AI/ML

Machine Learning in a Nutshell

Classical Machine Learning

- Using training data in an automated process to adjust algorithms
- Linear regression, support vector machines etc

Neural Networks

- Networks of basic operators mimicing the brain's neurons
- Training adjusts operators so network gives expected result for a given input

Inference

· Using a trained model to process new data

Common usecases

- Supervised learning (e.g., Classification)
 - Labeled dataset
 - Classifying new input data to one of the classes the model was trained with
- Unsupervised learning (e.g Anomaly detection)
 - No labelled data
 - Trained on "normal operation" dataset
 - Inference detects anomalies in input data that are very different from the "normal operation" dataset it is trained for

Neural Networks on Embedded Devices

Artificial Intelligence(AI) and Machine Learning(ML) at the Tiny Edge

Machine Learning Tools for Development in EFR32

Software and Tool Support for ML Applications

TensorFlow Lite Micro in the Gecko SDK

Embedded Development with Machine Learning (Supervised)

There are 3 workflow options depending on level of Machine Learning experience, and implementation flexibility desired

Simplicity Studio v5

Programming Model and Software Components

SSv5 Architecture Concepts and Programming Model

Gecko Platform

- Software catalogue
- Presented as software components

- Manage software components and access to other GUI tools
 - Component Editor
 - Pin Tool
 - GATT Configurator
 - Radio Configurator

SSv5 Software Components

Software Components

- Added through the Project configurator
- Install, uninstall, configure and instantiate
- Automatically add source, header and autogen code

🚢 empty_c_project.slcp 🛛					- 8
empty_c_project OVERVIEW SOFTWARE COMPONENTS CONFIGURATION TOOLS					
▼ Filter : Configurable Compo	nents 🗌 Installed	Components 🗌	Components Installed by You	SDK extensions	Q Search keywords, com
► Application		^			
▶ Bluetooth					
▶ Bluetooth Mesh					
► Connect					
► Flex					
► LwIP					
► Machine Learning					
▶ OpenThread					
▶ Platform					
► RTOS					
► Radio					
▶ Services					
► Third Party					
► Wi-Fi					
▶ Wi-SUN					
► Z-Wave					
► Zigbee					

- <u>External Device Drivers</u> (multiple)
 - APIs for Silabs and 3rd party devices
 - Development kit sensors
- Board Control
 - Enable/disable development kit features
- <u>Sleep Timer</u>
 - Software timers based on low-frequency hardware timers
- Power Manager
 - Mange the system energy modes

- Detailed information
 - <u>docs.silabs.com Gecko Platform</u>

Lab session

Lab Introduction

 Objective: Create a bare-metal application for sensor data collection using the xG24 dev kit, Simplicity Studio v5 and the Gecko Platform.

Requirements

- Hardware:
 - EFR32xG24 Dev Kit xG24-DK2601B (BRD2601B)
 - Micro-USB to USB Type-A cable
 - Optional) WSTK BRD4001A or WSTK PRO BRD4002A
- Software
 - Simplicity Studio v5
 - Gecko SDK Suite 4.0.2 or later
 - Accompanying lab source code

Lab Sections

Closing thoughts

Energy profiler

- In data gathering applications consider the following 5 factors:
 - Latency
 - Number of samples collected
 - Sampling frequency
 - Number of sensor sources
 - Data processing
- Finish early, sleep early

Application limitations:

- · No check to verify if the data was fully collected
- No timed method to acquire RHT data
 - Could be implemented with sleep timer
- Software components are not 100% efficient, e.g.
 - I2S microphone: Captures and discards 4096 samples BEFORE getting the requested samples
 - IO STREAM: Interrupt-based instead of LDMA based
 - I2CSPM: Polled vs interrupt or LDMA
- Powering on-board sensors requires GPIO
 - Slight consumption increase in EM2
- I2C sensors are powered through the same enable signal

