

WELCOME

Silicon Labs LIVE: Wireless Connectivity Tech Talks

Tech Talks LIVE Schedule – Presentation will begin shortly

Silicon Labs LIVE: Wireless Connectivity Tech Talks

Торіс	Date		
Connected Home Over IP for Beginners	Tuesday, April 21		
Z-Wave Smart Home Solutions	Thursday, April 23		
Battery Optimization with BG22	Tuesday, April 28		
Max Performance on BLE – Simultaneous Connections, Beacons and Scanning	Thursday, April 30		
SubGHz proprietary and Connect software stack	Tuesday, May 5		
How to measure and debug network performance - Using Silicon Labs network analyzer	Thursday, May 7		

https://www.silabs.com/support/training

Please take the 3 question poll while waiting and be entered to receive a Thunder BG22 Kit.

Training Update: Training targeted for www.silabs.com/training

Торіс	MP4	BRAINSHARK	Mandarin
BG22 Out-of-box Experience	IntroxG22-mp4	IntroxG22-BSHK	IntroxG22-cn-mp4
BG22 Low Power Features and Demo	BG22LowEnergy-mp4	BG22LowEnergy-BSHK	BG22LowEnergy-cn-mp4
BG22 HW Design Guidance	HWConsiderationsBG22-mp4	HWConsiderationsBG22-BSHK	HWConsiderationsBG22-cn-mp4
Security Introduction	SecurityIntro-mp4	SecurityIntro-BSHK	In Progress
Secure Boot with Root of Trust Secure Loader (RTSL)	SecureBootRTSL-mp4	SecureBootRTSL-BSHK	SecureBootRTSL-cn-mp4
Debug BLE with Network Analyzer	BLENetworkAnalyzer-mp4	BLENetworkAnalyzer-BSHK	BLENetworkAnalyzer-cn-mp4
Debug with EFR Connect Mobile App	IntroEFRConnect-mp4	IntroEFRConnect-BSHK	IntroEFRConnect-cn-mp4
Debug with a Secure Debug Port	SecureDebug-mp4	SecureDebug-BSHK	SecureDebug-cn-mp4
Debug with BGTool	BGTool-mp4	BGTool-BSHK	BGTool-cn-mp4
Bluetooth Advertisement Extensions	BLEAdvertExtensions-mp4	BLEAdvertExtension-BSHK	BLEAdvertExtensions-cn-mp4
Bluetooth Dynamic TX Power	BluetoothTXPower-mp4	BluetoothTXPower-BSHK	In Progress
Bluetooth Secure OTA	SecureOTA-mp4	SecureOTA-BSHK	In Progress
Bluetooth Direction Finding	BLEDirectionFinding-mp4	BLEDirectionFinding-BSHK	In Progress
Customer Bluetooth Qualification Process	BLECertification-mp4	BLECertification-BSHK	In Progress
Customer RF Regulatory Process	RFRegulatory-MP4	RFRegulatory-BSHK	RFRegulatory-cn-mp4
Z-Wave Peripheral Tutorial	ZWavePeripherals-mp4	ZWavePeripherals-BSHK	In progress
Z-Wave Associations	ZWaveAssociations-mp4	ZWaveAssociations-BSHK	In progress
Z-Wave Certification	ZWaveCertification-mp4	ZWaveCertification-BSHK	In progress
Z-Wave CTT Introduction	ZWaveCTTIntro-mp4	ZwaveCTTIntro-BSHK	
Bluetooth RF-PHY Evaluation	BluetoothRFPHYEval-mp4	BluetoothRFPHYEval-BSHK	

Battery Optimization with BG22

APRIL 2020

Agenda

- EFR32BG22 overview summary
- Available Energy modes
- BLE Stack operational overview and features for battery optimization
- SoC hardware features for battery optimization

EFR32BG22: Optimized Battery Powered Bluetooth LE

Optimized

Secure Bluetooth 5.2 SoCs for High-Volume Products

Radio

Bluetooth 5.2 TX: -27 to +6 dBm RX: -96 to -107 dBm 1M, 2M and LE Coded PHYs AoA & AoD

Ultra-Low Power

3.5 mA TX (radio) 2.6 mA RX (radio) 1.4 μA EM2 with 32 kB RAM 0.5 μA w/ RTC in EM4

World Class Software

Bluetooth 5.2 Bluetooth mesh LPN Direction Finding

Compact Size

5x5 QFN40 (26 GPIO) 4x4 QFN32 (18 GPIO) 4x4 TQFN32 (18 GPIO)

ARM Cortex-M33 with TrustZone

38.4/76.8 MHz 352/512 kB of flash 32kB RAM

Peripherals Fit for Purpose

2x USART, 2x I2C, 2x PDM and GPIO 12-bit ADC (16 channels) Built-in temperature sensor with +/- 1.5 °C Built-in 32 kHz, 500ppm sleep clock

Security

AES128/256,SHA-1, SHA-2 (256-bit) ECC (up to 256-bit), ECDSA and ECDH True Random Number Generator (TRNG) Secure boot with RTSL Secure debug with lock/unlock

Extending Battery Life in Bluetooth Applications

BG22 Virtual Workshop

Learn how to develop and deploy more powerful, efficient, and secure IoT products with your own BG22 Thunderboard – free for all registrants!

North America: May 19th–21st, 2020

May 12th-14th, 2020

10:00AM -11:30 AM CST

(Other sessions available for Asia Pacific and Europe)

Register today! <u>https://www.silabs.com/about-us/events/virtual-bluetooth-workshop</u>

SoC Hardware Features – EFR32BG22

BLE Intervals and Energy Modes

Energy Profiler

Battery Optimization – Software Considerations

Resources

https://docs.silabs.com/bluetooth/latest/

13

Software – Gecko Event Handler

- The SiLabs BLE stack utilizes an event handler to notify the application of BLE related events.
- If configured the BLE stack will automatically enter the lowest available power state when there are no events available from the stack.

- The end user can prevent the stack from entering low power mode by calling a non-blocking function: gecko_peek_event.
- Low power states can still be used by requesting the available time the stack can sleep via gecko_can_sleep_ms
- Then the stack can be put into an EM low power state by issuing a gecko_sleep_for_ms command.

/* Wait (blocking) for a Bluetooth stack event. */
evt = gecko_wait_event();

struct gecko_cmd_packet* gecko_peek_event(void)

uint32 gecko_can_sleep_ms(void)

uint32 gecko_sleep_for_ms(uint32 max)

https://docs.silabs.com/bluetooth/latest/general/c-developer39s-guide

Software Timers, Ticks

- Applications typically have various actions that occur on set time intervals: Check a battery, Communication time outs, slow LED control
 - Application timers such as this consume a significant amount of power as the core needs to wake up to handle every tick event.
- Alternatively the user can actively manage application level timers, and set a timer to wake up to handle the next event

• Utilize the BLE stack software timers

- Soft Timer
- Lazy Soft Timer
 - Timer with 'slack', allows device to trigger timer event while it's already in a high power state for other functions
- Stack can support up to 16 simultaneous timers
- Supports Single Shot or Repeating Timer modes
- Valid Timer range is 10ms up to 18.2 hours

gecko_cmd_hardware_set_soft_timer(SOFT_TIMER_1_SECOND, TIMER_HANDLE_POLL_UART, TIMER_ONE_SHOT);
break;

https://docs.silabs.com/bluetooth/latest/hardware#cmd_hardware_set_soft_timer_

break:

Software – Managing Power States

- Understand the various power states and use the sleep driver to help manage the device.
 - SLEEP_SleepBlockBegin(sleepEM2); will prevent the device from entering EM2 or lower power states
 - Use this while trying to utilize peripherals that require the high speed clocks, like ADC or UART/SPI

https://docs.silabs.com/bluetooth/latest/general/system-and-performance/using-energy-modes-with-bluetooth-stack

SoC Hardware Features – EFR32BG22

Save Power by using the DC/DC – Energy Management Unit

- The EFR32BG22 can consume
 - 2mA while in EM0
 - 2uA while in EM2
- Utilize the internal DC/DC for better power efficiency.
- Using the DC/DC can reduce the EM0 current consumption to
 - 1.32mA while in EM0 (30% energy savings)
 - 1.5uA in EM2 (25% energy savings).
- DC/DC converter operates down to 2.2V
- Utilize the VDD Comparator
 - The EMU contains a VDD Comparator to help monitor the main supply voltage level.
 - The comparator will trigger an interrupt if the voltage drops below a configured value to allow the user to bypass the DC/DC converter.
- DC/DC requires an extra inductor and capacitor for operation.

Low Power considerations vs BoM reduction

- Using a precision 32k crystal can reduce overall current consumption.
 - EM2 state with an external crystal consumes 1.4uA
 - Active connection with 48ms intervals consumes 49uA average
- EFR32BG22 offers an internal Precision RC Oscillator that can be used in place of an external 32k crystal
 - Ideally used for tag application that infrequently connect.
 - Available in normal energy mode and down to EM2 in precision mode
 - Precision mode provides 500 ppm accuracy
 - Achieved with temperature sensing and autonomous calibration
 - Temperature check rate is configurable
- EM2 current consumption in precision mode
 - EM2 state with LFRCO consumes 1.7uA in stable temperature
 - >+10 uA at dynamic temperature due calibrations
 - Active connection with 48ms intervals consumes 52uA average

CMU_OscillatorEnable(cmuOsc_LFRCO, true, true); CMU_LFRCOSetPrecision(cmuPrecisionHigh);

Power savings through clocking

- The EFR32BG22 requires a 38.4MHz external crystal oscillator for radio operation.
- The application core can be configured to operate at 38.4MHz or 76.8MHz.
 - If the higher operating speed is not needed current consumption can be reduced by ~50%+ by running the core at 38.4MHz.

76.8 MHz HFRCO w/ DPLL refer- enced to 38.4 MHz crystal, CPU running Prime from flash, VSCALE2	_	28	_	µA/MHz
38.4 MHz crystal, CPU running Prime from flash	_	28	-	µA/MHz

- Understanding your use case to determine the optimal clock settings
- A thermometer or asset tag would benefit from a low clock speed and the lower current consumption
- Computationally intense applications would save power by being able to process the complex data much faster.

Maintain integrity of your battery with internal temperature sensor

- Many industrial applications operate in conditions that are not suitable for standard battery chemistries or form factors.
 - Overall battery life can be greatly impacted while used in extremely cold conditions
- The EFR32BG22 provides an integrated die level temperature sensor that can achieve accuracy of ±1.5 °C.
 - Provides resolution steps of 0.25 °C.
 - Samples taken every 250ms
 - Configurable interrupts available: new measurement, updated average, configured low threshold crossed, configured high level threshold crossed.

Battery Optimization – Power Amplifier

- The BG22 has a 0dBm PA optimized for extended battery life in personal area network devices.
 - Such as Wearables, heart rate monitors, and blood glucose monitors.
- The PA of the BG22 has different operating modes: High Power and Low Power.
 - With High power mode a TX of 0dBm will require more power than if it is configured for Low Power mode.
 - High Power Mode TX at 0dBm consumes 5.2mA
 - Low Power Mode TX at 0dBm consumes 4.2mA

Battery Optimization – Pre commissioned Storage

- Sealed one-time-use Badges, Wristbands and Tags
 - Devices are sealed with batteries at manufacturing
 - Devices travel to use site
 - Devices will normally then be stored before use.
- BG22 offers a deep sleep (< 200 nA) storage mode with the ability to begin normal operation with a RF wake signal
- RF Sense
 - Wake up from EM2, EM3 and <u>EM4</u> modes
 - Continuous wave and OOK (On-Off keying) preamble and syncword detection
 - 4 / 8 bit preamble and 8 / 16 / 32 bit syncword
 - RF detection threshold programmed between -35dBm and -14dBm
 - Low power consumption < 200 nA</p>

Selecting a BG22 Device

	BG22C112	BG22C222	BG22C224
Use cases	High-volume, consumer	Better RF, more GPIO	Advanced features, higher temp rating
Bluetooth features	1M and 2M PHYs AoA TX	1M and 2M PHYs AoA TX	1M and 2M PHYs 125k and 500k LE Coded PHYs Bluetooth mesh LPN IQ sampling for AoA
Max TX power	0 dBm	6 dBm	6 dBm
RAM	32 kB	32 kB	32 kB
Flash	352 kB	352 kB	512 kB
Max Temperature	-40 to +85°C	-40 to +85°C	-40 to +85°C (GN/GM OPNs) -40 to +105°C (IM OPNs)
Max GPIO	18	26	26
Package options	4x4 QFN32	4x4 QFN32 4x4 TQFN32 5x5 QFN40	4x4 QFN32 4x4 TQFN32 5x5 QFN40

Silicon Labs' Bluetooth Module Families

	SILIEN LAR Blue Gecko BGM13P	SILICON LAES BGM13S BGM13S	BGM210P	BGM210L	SILICIA LABS BGM220P BGM220P (Q3'20)	SILICON LASS BGM220S BGM220S (Q3'20)
Protocols	5.1 and mesh (1M, 2M, Coded PHY and AE)	5.1 and mesh (1M, 2M, Coded PHY and AE)	5.1 and mesh 1.0 (1M, 2M, Coded PHY and AE)	5.1 and mesh 1.0 (1M, 2M, Coded PHY and AE)	5.2 and mesh 1.0 LPN (1M, 2M, Coded PHY, AE and AoA/D)	5.2 and mesh 1.0 LPN (1M, 2M, Coded PHY, AE and AoA/D)
EFR32 SoC	BG13	BG13	BG21	BG21	BG22	BG22
Antenna	Built-in or U.FL	Built-in or RF pin	Built-in or RF pin	Built-in	Built-in	Built-in or RF pin
Max TX power	+8 / +19 dBm	+8 / +18 dBm	+10 / +20 dBm	+12.5 dBm	+8 dBm	+6 dBm
Sensitivity (1M)	-94.8 dBm	-94.1 dBm	-97 dBm	-97 dBm	-98 dBm	-98 dbm
Flash (kB)	512	512	1024	1024	512	512
RAM (kB)	64	64	96	96	32	32
GPIO	25	30	20	12	24,25	25
Operating Voltage	1.8V-3.6V	1.8V-3.6V	1.8-3.8V	1.8-3.8V	1.71V – 3.8V	1.71V – 3.8V
Operating Temp.	-40 to +85C	-40 to +85C	-40 to +125C	-40 to +125C	-40 to +105C	-40 to +105C
Dimensions W x L x H (mm)	13.0 x 15.0 x 2.2	6.5 x 6.5 x 1.4	13.0 x 15.0 x 2.2	13.0 x 15.0 x 2.2	13.0 x 15.0 x 2.2	6 x 6 x 1.3
Certifications	BT, CE, FCC, ISED, Japan, S-Korea and Taiwan	BT, CE, FCC, ISED, Japan & S-Korea	BT, CE, FCC, ISED, Japan & S-Korea	BT, CE, FCC, ISED, Japan & S-Korea	BT, CE, FCC, ISED, Japan & S-Korea	BT, CE, FCC, ISED, Japan & S-Korea

Getting Started

https://www.silabs.com/support/getting-started/bluetooth/bluetooth-low-energy

SLWSTK6021A

Thunderboard BG22 SLTB010A

3. Download the SiLabs EFR Connect mobile app for

iOS or Android

2. Install Simplicity Studio

4. Explore our online resources

https://docs.silabs.com/bluetooth/latest/

BG22 Virtual Workshop

Learn how to develop and deploy more powerful, efficient, and secure IoT products with your own BG22 Thunderboard – free for all registrants!

North America: May 19th–21st, 2020

May 12th-14th, 2020

10:00AM -11:30 AM CST

(Other sessions available for Asia Pacific and Europe)

Register today! <u>https://www.silabs.com/about-us/events/virtual-bluetooth-workshop</u>

