2023

tech

WEBINAR SERIES

Welcome

Bluetooth App Development with CircuitPython

Nicola Wrachien & Scott Shawcroft

9 BLUETOOTH SERIES

Presentation
Will Begin
Shortly

teChm UPCOMING SESSIONS

NEW

OCT 26™ | Bluetooth App Development with CircuitPython

NOV 16™ | Enhancing Bluetooth LE Advertising Range

with Novel Bits

FEB 23F%P

MAR 23RP

APR 20™

MAY 18™

JUN 15™

ON DEMAND

ML in Predictive Maintenance and Safety Applications
Unboxing: What's New With Bluetooth

What's New with Bluetooth Mesh 1.1

Bluetooth Portfolio: What's Right for Your Application
The Latest in HADM With Bluetooth LE

wewineesinin: ()2 ()0

&= SILICON LABS

About CircuitPython

Architecture

Supported Boards

Port Features

Example: Bluetooth LE Application

Sample Code

Conclusion

3 ©2023 Silicon Labs Inc. All rights reserved. ‘S’ SILICON LABS

About CircuitPython

Origin of CircuitPython

e IIII — o Bijihon

CIRCUITPYTHON, SIMPLIFIED

PYTHON IS VERY HIGH LEVEL

« Good for beginners
« Lots of libraries
+ Batteries included =»fast development

* Not good for MCUs

» Limited access to hardware
resource

» Memory hungry

5 ©2023 Silicon Labs Inc. All rights reserved.

MICROPYTHON WAS DEVELOPED

Optimized for 32-bit MCUs

Some less-used features not
implemented

REPL (read-eval-print loop) console
over UART

Target Python 3.4 language features

Limited standard library support

Fork of MicroPython

Focused on students, beginners,
ease of use

Unified hardware-access APIs

Initially: on different, less powerful,
MCUs than MicroPython (now many
powerful MCUs supported too)

&= SILICON LABS

CircuitPython: Advantages and Drawbacks

ADVANTAGES DRAWBACKS

= Very high-level language = Interpreted language, slow, memory intensive
+ Few lines to create relatively complex programs + Large flash footprint by default
= Beginner Friendly: = Lesscontrolon hardware
« Easy to use, with smooth learning curve « Hard to use MCU-specific peripherals without Python driver
« Automatic memory management, with garbage collector = Some hiddenissues,which might be frustrating
sometimes

* No pointers
« How does “Oxfor xin (1, 2, 3)” eval?

« Errors found during runtime rather than compile time (e.g.
modules not found)

« Tons of libraries

« Tons of examples and guides
= Cross-platform compatible « Hidden bugs that might have been caught at compile time if

+ The same project can run in different MCUs strong typed

« Many projects can run on Linux SBCs via Blinka
= No compilation time
= Many more Python devsthan C devs

= Simple setup

6 ©2023 Silicon Labs Inc. All rights reserved. ‘S’ SILICON LABS

C-code Performance Not Always a Must

WHY CIRCUITPYTHON?
— .
Tl

REAL-WORLD USING EXISTING
QUICK POC CREATION STRONG MCU APPLICATIONS LIBRARIES

Focus on the application ~80 MHz Cortex M33is fast E.g., On/Off relay or a The CPU-intensive work can
behavior and Timeto Market enoughto handle higher thermostat be done by existing libraries,
level languages than Cat a o : written in C.
Responsetimein ~ms Is
good speed _
morethan enough Theimpact of Python

iImplementation is reduced.

7 ©2023 Silicon Labs Inc. All rights reserved. ‘S’ SILICON LABS

About Silicon Labs

SILICON LABS FOCUS: IOT MARKET

a 0 @
ol

Z

V@ sk o & T

MANY PRODUCT VARIANTS DIVERSE PROTOCOLS WIDE MARKET

Different formfactors Bluetooth LE Smart Home
Cost Zigbee Industrial loT
Performance (CPU, RAM, FLASH, MVP) Matter Smart Cities
Peripheral set Z-Wave Smart Retails
Etc. Etc. Connected Health

8 ©2023 Silicon Labs Inc. All rights reserved.

&= SILICON LABS

Addressing Makers Ecosystem

Addressing the maker community's need to interface
with a broad audience from beginners...up to experts.

CURRENT SILICON LABS

DEVELOPMENT ENVIRONMENT

WELL KNOWN ECOSYSTEMS, NEEDS
TO BE SUPPORTED

= QOur main SDK is the Gecko SDK (GSDK)

- Largely based on C . .
« Hundreds of different files — BI[UUI
« Maintained by Silicon Labs p

« No or limited third party contribution

= Our Main Development Tool is Simplicity Studio

« C or C++ projects

= Bluetooth LE is a rather complex protocol

9 ©2023 Silicon Labs Inc. All rights reserved. ‘S’ SILICON LABS

Architecture

&= SILICON LABS

Architecture

= Multithread architecture using Free RTOS (other RTOS can be used thanks to OS abstraction layer)

= Less issues in handling time critical protocol-related tasks.

= Easier to add other protocols (Dynamic multi protocol can be supported as well)

11 ©2023 Silicon Labs Inc. All rights reserved.

BLE
Thread

Optional
Protocol

2
Thread

Optional
Protocol
“”
Thread

REPL Prompt

OS Abstraction Layer

Free RTOS

CircuitPython Script (.py file)

Bytecode Lib (.mpy file)

&= SILICON LABS

Architecture

Application layer

= Python code and libraries for the project.
Code and libraries loaded from the ‘
filesystem or REPL (Read-Eval-Print Loop)
console.

REPL Prompt CircuitPython Script (.py file) Bytecode Lib (.mpy file)

= REPL console
Command-line interface that allows
developers to interactively test and debug
their code on the microcontroller.

REPL runs only after the code.py finishes.

12 ©2023 Silicon Labs Inc. All rights reserved. ‘5’ SILICON LABS

Architecture

CircuitPython core layer

= Core libraries:
Standard Python libraries including modules
for math, string manipulation, file I/0O, and
more...

REPL Prompt CircuitPython Script (.py file) Bytecode Lib (.mpy file)

= Runtime environment: —>
Provides the necessary infrastructure to
execute Python code on the microcontroller,
including memory management, garbage
collection, and exception handling.

= Python Interpreter:
Interprets py code, compiles and feeds it to
the VM.

= Python Virtual Machine:
Executes python bytecode.

13 ©2023 Silicon Labs Inc. All rights reserved. ‘5’ SILICON LABS

Architecture

REPL Prompt CircuitPython Script (.py file) Bytecode Lib (.mpy file)

Hardware abstraction layer (HAL)

= Provides a consistent interface to
interact with the MCU hardware.

= Setof HAL API provided by — m—

CircuitPython.

= MCU-specific APl implementation

SDK
= Provides stacks, and low-level MCU-
specific drivers

14 ©2023 Silicon Labs Inc. All rights reserved. ‘5’ SILICON LABS

Supported Boards

Supported Boards

SPARKFUN THINGPLUS
MATTER

= XxG24based,supporting BLE

= On-boarddebugger

= 3rd party hardwaresupport
= Qwiic connector

= Lowestprice point

= Feather Formfactor

= SD Cardslot

16 ©2023 Silicon Laboratories Inc. All rights reserved.

XG24 EXPLORERKIT

XG24 DEVELOPMENT KIT

xG24 based,supporting BLE
On-board debugger
3'd Party Hardware Support

= Qwiic connector

MikroBus Connector

xG24 based,supporting BLE
On-board debugger
3rd Party Hardware Support

= Qwiic connector
On-Board sensors

Impressive out-of-the-box
demos

External Flash

&= SILICON LABS

Port Features

&= SILICON LABS

Flash Memory and FileSystem

« CircuitPython uses a file system to store code/data:

- Internal Flash
« External Flash
- External SD card (adafruit_sdcard)

= Modules and code loaded to RAM
- = high RAM usage
« Frozen lib are integrated in the firmware
« =» no need to load them in RAM

18 ©2023 Silicon Labs Inc. All rights reserved.

Flash Map
+0x0000 010000

0x08020000
0x08040000
- T
oo 3 0] 0 S
0x080A0000
0x080C0000
s [e syt [
0x08 100000 ..

0x08120000

0x08140000

Legend

Blank: Contains data: . Write protected: %

&=" SILICON LABS

Internal Peripheral Support

Low level drivers made in C supporting internal MCU peripherals:

= Serial interfaces: 12C, SPI, UART (busio)

Common-hal_bleio

= Analog functions (ADC, DAC) (analogio)

= GPIOs (dlg italio) EFR32 Driver Wrapper
= PWM (pwmio)

= RTC (rtc)

= NVM (microcontroller.nvm)

CircuitPython allows flexible configuration of pins for peripheral communication.
= This uses Silicon Labs EFR32 devices’ ability of mapping any peripheral to almost any GPIO.

Board’s default UART pin assignment: uart = busio.UART(board.TX, board.RX, baudrate=96600)

Routing to a different pin: uart = busio.UART(board.PB1l, board.PB2, baudrate=96600)

19 ©2023 Silicon Labs Inc. All rights reserved. ‘S’ SILICON LABS

External Peripheral Support

Adafruit CircuitPython Library Bundle

= Collection of python libraries/examples for over
300 devices (display, sensors, etc).

= Allow to use any external peripheral on any MCU,
having some internal peripheral sets.

= Based on lower level drivers coded in C for
internal peripheral support.

import board
from adafruit _bme280 import basic as adafruit_bme280

i2c = board.I2C()
bme280 = adafruit_bme280.Adafruit BME280 I2C(i2c)

print("\nTemperature: %0.1f C" % bme280.temperature)

20 ©2023 Silicon Labs Inc. All rights reserved.

Adafruit_CircuitPython_BLE

Common-hal_bleio

EFR32 Driver Wrapper

busio-i2c
e “ m

import board definitions and peripherals
import Adafruit Library Bundle BME280 driver

create i2c object required by the sensor driver
create bme280 driver object

read and print temperature

&= SILICON LABS

Bluetooth LE Support

Adafruit_Circuitpython_BLE

= python module providing high level CircuitPython Thread
easy to use APIs for BLE.

= Can be both external or frozen lib. Adafruit_CircuitPython_BLE

= built over _bleio (in C)

Sync Event BLE Thread

>

_bleio

provides necessary low-level
BLE Stack

functionality for BLE,
interact with events from BLE thread.
= dynamic GATT table support

Start Advertising with six lines of code!

from adafruit_ble import BLERadio

from adafruit_ble.advertising import Advertisement

ble = BLERadio()

adv = Advertisement()

adv.complete name="Silabs CircuitPython"
ble.start_advertising(advertisement = adv, interval = 1)

init BLE

create advertisement object
set complete name

start advertising

HoH R R

21 ©2023 Silicon Labs Inc. All rights reserved. ‘S’ SILICON LABS

Performance Comparison

&= SILICON LABS

Performance Comparison

= Hard to do a fair comparison
« Which optimization level was used?
« Which operation?
« Which libraries?

23 ©2023 Silicon Labs Inc. All rights reserved.

xG24 DEV kit

_

/

V.S.

/

o

L)

xG24 DEV kit

\

/

&= SILICON LABS

Performance Comparison

= Inefficient bubble-sortalgorithm + optimized library sort function of a descendentarray

Circuitpython code C code
— (Simplicity Studio empty C project + test)

1 #
2 import time
3 dimport microcontroller
4 def bubbleSort(arr):
5 n = len(arr) 21 #include “em_cmu.h™ |
6 for i in range(n-1): 22 #:}nclude <stdbool.h>
7 for j in range(®, n-i-1): 23 #f“CIUdE 59 size_t numTests = 16;
] # Swap if out of order 24 #:}nclude 68 unsigned int timeStart, timeStop;
if arr[§] > arr[j + 1]: 25 #JNC:!IJdE 51 unsigned int avgTimelUs;
) 26 #define | 62 timeStart = SysTick->VAL;
napnedpeRTnus 27 int arra| 63 for (size_t test = @; test < numTests; test++) {
arr[31, arr[j + 1] = arr[j + 11, arr[4] 255 void bub| 62 7/ iniiarrey
if not swapped: 29 { 65 for (size_t i = 8; i < ARRAY_SIZE; i++) {
exit if no swap 38 bool} &5 array[i] = ARRAY_SIZE - i;
return 31 for | &7
Test speed 32 68 // sort it
print{"Bubble sort example") 33 69 bubbleSort(array, ARRAY_SIZE);
print("USING CUSTOM FUNCTTON:") :‘;' ;f Lmesm — SyeTicksVAL:
print("CPU Speed:", microcontroller.cpu.frequency / 1000000.0,"MHz") e - angimeEs _)Eti.mestar't : timestop) * 1 L6f / cpuFreq / nunTests;
numTests = 16 37 75 deepEe
arraySize = 64 g 74

Dl S 2 L D) 39 75 ...and some tens morefiles...

for i in range(@, numTests): 48 76
arr = list(range(arraySize, 0, -1)) 41 77
bubbleSort(arr) 42 78

stopTime = time.monotonic_ns() 43

avghMs = (stopTime - startTime) * le-6 / numTests 44 80 (aUtOgenerated, Stl” req Ulre User

print("Avg time sorting ", arraySize,"elements is", avgMs, "ms"); ig } g; f . ART I k PI
print("CPU cycles ", avgMs * microcontroller.cpu.frequency / 1000); 4?___1“ sntd 83 Con Ig Uratlon - U y C OC y G OS)
#built-in fun e

s . 48 84 -
startTime= time.monotonic_ns() 49 { retur]| &5 gqsort(array, ARRAY_SIZE, sizeof(array[@]), intCmp);
for i in range(®, numTests): 5@ 36

arr = list(range(arraySize, 0, -1)) 512 void tes| 87 timeStop = SysTick->VAL;

arr.sort() 52 { a3 avgTimels = (timeStart - timeStop) * leeeees.af / cpuFreq / numTests;
stopTime = time.monotonic_ns() 53 unsign| 59 /1

avgMs = (stopTime - startTime) * 1e-6 / numTests 54 printf| 29 P"%”tf("USING_LIBRARY_FUNCTmm\"\”")J: .
rint("USING LIBRARﬂ FUNCTION: ") 55 SysTic 91 printf({"Avg time serting %u elements is %u us\r\n", ARRAY_SIZE, avgTimels);
Er‘int("Avg time sorting " arr.'aySize "elements is", avgMs, "ms"); 56 SysTicl 22 printf(7CPU cycles ®ulrin”, (timeStart - timeStop) / numTests);

s 0 ® s p . 57 SysTick-»>CTRL = 5;
print("CPU cycles ", avgMs * microcontroller.cpu.frequency / 1000); <z printf("CPU Speed: %d MHz\r\n", cpuFreq / 1 v

24 ©2023 Silicon Labs Inc. All rights reserved. ‘S’ SILICON LABS

Performance Results

circui

Bubble sort example

USIHNG CUSTOM FUMCTIOM:

CPU Speed: 78.8 HH=z

Avg time sorting 64 elements is YA.4345 ms
CPU cycles 5.4938%e+86

USIHNG LIBRARY FUMCTIOM:

Avg time sorting 64 elements is 2.87519 ms
CPU cycles 161865.8

i e sort example

CPU Speed: 78 HMH=

USING CUSTOM FUNCTION:

Avg time sorting 64 elements is 296 us
CPU cuycles 23161

USING LIBRARY FUNCTION:

Avg time sorting 64 elements is 8O us
CPU cucles 6298

C vs CircuitPython bubble sortimplementation: 296 microsecondsvs 70 ms: 236 times slower

“Only” 25 times slower if using libraries. Libraries are 35 times fasters.

= Don’treinvent the wheel. Use libraries whenever possible!

25 ©2023 Silicon Labs Inc. All rights reserved. ‘S’ SILICON LABS

Bluetooth LE Example

Suggested Development Environment

= We suggest Thonny
« Syntax highlight
« REPL console output

« Directly uploads, even
without native USB

- Additional features:
» Variable list
» Program tree

» Object inspector

27 ©2023 Silicon Labs Inc. All rights reserved.

T& Thonny - CircuitPython device: /codepy @ 25: 65
File Edit View PRun Tocols Help

JZHd O @ ™

<untitled=

0 0o

P B BRI R R BRI

Shell

(ST

i

[Ty =

L

from
from
from
from
from
from

[codepy]”

adafruit_ble.
adafruit_ble.
adafruit_ble.
adafruit_ble.

adafruit_ble

adafruit_ble.

uuid import VendoruuID

services import Service

characteristics import Characteristic
characteristics.json import JSOMCharacteristic

import BLERadio

advertising.standard import ProvideServicesAdvertisement

class SensorService(Service):

uuid = VendorUUID("51lad213f-e568-4e35-84e4-67af89c79efa@")

sensors = JSONCharacteristic(
uuid=VendoruUID("528ff74b-fdb8-444c-9c64-3dd5dadl35ae™),
properties=Characteristic.READ,

ble
conn

whil

def __init_ (self, service=Mone):

super()._

init_ (service=serwvice)

zelf.connectable = True

= BLERadica()

ection = None

e True:

if not connection:
print("Scanning for BLE device advertising our sensor service...™)
for adv in ble,start_scan(ProvideServicesAdvertisement:1:|

Scanning tor HBLE device advertlsing OUr SENS0OL SELVICE. ..
Scanning for BLE dewice adwertising our sensor service. ..

Traceback (most recent call last):
File "<stdin>", line 25, in <module>
File "adafruit ble/ init .py", line 270, in start scan
EeyboardInterrupt:
b s

— O *
Variables
Mame Value 2
BELERadic <class 'BLERadic'>
Characteristic «class 'Characteristic'>
JSOMCharacteristic <class 'JSOMNCharacteristic'»

ProvideServicesAdver <class 'ProvideServicesAdvertisement':

SensorService
Service

Ohbject inspector

o o type @ 0x20026660

<class 'SensorService's
«<class 'Service'>

Stack

Data | Attributes

MName Value

_prefix_bytes b 0102400103 010 06\ 0T e 07
appearance <5Struct object at 0x20027250>
complete_name <5tring object at 0x20027200>

flags <LazryObjectField object at (x2002718(

get_prefix_bytes
match_prefixes
matches
matches_prefixes
rssi

<bound_method=
(b"x02', b"x03', b"x 086", b"x07")
<bound_method=
<hound_methaod>

<property>

services <Servicelist object at 0x20026620=
short_name <5tring object at 0x200271a0>
bx_power <Struct object at 0x200271%0>

CircuitPython (genenc) - CDC @ COM19 =

&= SILICON LABS

BLE Example features

= Measure temperature and humidity (xG24 Development Board)

= Collector automatically finds the sensor board, connects, and prints the results. (Sparkfun ThingPlus
Matter board).

« Advertises with a specific payload « Scans for devices with the Sensor Service
« Measures humidity and temperature Connects to the device
» Accepts connections from a central device * Reads measurements

28 ©2023 Silicon Labs Inc. All rights reserved. ‘s’ SILICON LABS

Simple Thermometer + Humidity Sensor Application

Bluetooth LE peripheral device Bluetooth LE central device

from adafruit_ble.uuid import VendorUUID

from adafruit_ble.services import Service

from adafruit_ble.characteristics import Characteristic

from adafruit_ble.characteristics.json import JSONCharacteristic
import time

from adafruit_ble.uuid import VendorUUID

from adafruit_ble.services import Service

from adafruit _ble.characteristics import Characteristid

from adafruit_ble.characteristics.json import JSONCharacteristic

import sensor from adafruit_ble import BLERadio

import board from adafruit_ble.advertising.standard import ProvideServicesAdvertisement
from adafruit_ble import BLERadio

from adafruit_ble.advertising.standard import ProvideServicesAdvertisement class SensorService(Service):

uuid = VendorUUID("51ad213f-e568-4e35-84e4-67af89c79efa")
. " " sensors = JSONCharacteristic

uuid = VendorUUID("S51lad213f-e568-4e35-84e4-67af89c72efa") uuid=VendDrUUID("528ff?4é-fdb8- c-9c64-3dd5dad135ae")
sensors = JSONCharacteristic(. .. ST !

uuid=VendorUUID("528Ff74b-Fdbs-444c-9c64-3dd5dadlisae"), : properties=Characteristic.READ | Characteristic.NOTIFY,
def _ init_ (self, service=None):

super()._ init_ (service=serwvice)

self.connectable = True

class SensorService(Service):

properties=Characteristic.READ | Characteristic.NOTIFY,

def _ init_ (self, service=None):
super().__init_ (service=service)
self.connectable = True

ble = BLERadio()

. connection = None
i2c = board.I2C()

sensor.init(izc) .
while True:

ble = BLERadio()

service = SenserService()

advertisement = ProvideServicesAdvertisement(service) print("Scanning for BLE device advertising our sensor service...”)

advertisement.short_name="5ilabsCP” for adv in ble.start_scan(ProvideServicesAdvertisement):

def measure(): print(adv.services)

temperature = sensor.temperature() if SensorService in adv.services:

humidity = sensor.humidity() . . connection = ble.connect(adv)
return {"temperature™: temperature,"humidity”:humidity} . - "
print("Connected™)

if not connection:

while True: break
print("Advertise services") ble.stop_scan()
ble.stop_advertising()
ble.start_advertising(advertisement) if connection and connection.connected:
print("Waiting for connection...™) service = connection[SensorService]
while not ble.connected: while connection.connected:
pass v

print("Connected") print("Sensors: ", service.sensors)
while ble.connected:

service.sensors = measure() Zcanning for BLE device advertising our sensor service...

time.sleep(8.25) <BoundServiceList: UUID{'51ad213f-e568—4e35—84ed4—6Yaf82c?7efid’ 3>
print("Disconnected™) Connected
Sensors: {'humidity’: 58.625,. 'temperature’: 27_837:

Sensors: {"humidity’: 5@8.625,. ‘temperature’: 27_8393
: : : Sensors:s {'humidity’: 58.625,. 'temperature’: 27 _8B61>
" Vel’y feW “neS Of COde for bOth appllcatlonS! Sensors: {"humidity’: 5@8.625,. ‘temperature’: 27_8613%
Senzorss {'humidity’ Yo 27_861>

LA_625,. 'temperature

29 ©2023 Silicon Labs Inc. All rights reserved. ‘5’ SILICON LABS

Sample Code

&= SILICON LABS

Sample Code

= In https://github.com/SiliconLabs/circuitpython_applications/tree/main we released some examples

No Example name

1 CircuitPython - Bluetooth - Distance Monitor (VL53L1X)
2 CircuitPython - Bluetooth - Environmental Sensing (CCS811/BME280)
3 CircuitPython - Bluetooth - Neopixel Humidity Gauge (SHTC3)

4 CircuitPython - Bluetooth - Light Detector (AS7265x)

5 CircuitPython - Non-Wireless Display Demo (I1S31FL3741)
6 CircuitPython - RGB Display Drawing (ILI9341)

CircuitPython - Temperature and Humidity Monitor with LED Matrix Display
(512071/1S31FL3741)

8 CircuitPython - xG24 Dev Kit Sensors (ILI9341)

32 ©2023 Silicon Labs Inc. All rights reserved.

Link to
example

Click Here
Click Here

Click Here

Click Here

Click Here

Click Here

Click Here

Click Here

Bluetooth LE-based

&= SILICON LABS

https://github.com/SiliconLabs/circuitpython_applications/tree/main

Some examples

B

SemAAsMANRANIaE

R I)

R

1531713741 1358 RGB.O

&= SILICON LABS

33 ©2023 Silicon Labs Inc. All rights reserved.

Sample Code

CircuitPython - Bluetooth - Distance Monitor (V

Overview &

This project shows a demonstration of a Bluetooth Low Energy distance monitor system using Spa
development kit and the integrated CircuitPython BLE Stack.

The block dizagram of this application is shown in the image below:

’) BLE (t
| Y
|| VLBILTX - Distance Sensor ‘Sparkiun Thing Plus Mamer . MGMI40 Bpartue H(PD&E‘E;II‘M (Cree) :I
\ / .
~ -
—/\ /
_x -

Hardware Required @
® SparkFun Thing Plus Matter - MGM240P
® SparkFun Distance Sensor Breakout - 4 Meter, VL53L1X (Qwiic)
e OLED Display - 5501306

Connections Required &

The sensor and OLED display can easily connected with Sparkfun Thing Plus for Matter - MGM240

34 ©2023 Silicon Labs Inc. All rights reserved.

» Runtime operation &

VISH1x chack for data ready

process dats & check threshald

updsts distance page

ofificatios
actve

scroling
ihrashold

et

* GATT database 2

o [Service] Distance Monitor

m [Char] Lower Threshold Value - threshold_value_lower
» [R] Get lower threshold value (mm)
= [W] Set lower threshold value (mm)

» [Char] Upper Threshold Value - threshold_value_upper
» [R] Get upper threshaold value (mm)
® [W] Set upper threshaold value (mm)

= [Char] Threshold Mode - threshold_mode
n [R] Get threshold mode (0-2)
= [W] Set threshold mode (0-2)

= [Char] Range Mode - range_made
= [R] Get configured range mode (0-1)
= [W] Set range mode (0-1)

= [Char] Motification Status - notification_status
= [R] Get configured notification status (0-2)
® [W] Set notification status (0-2)

1 need to install Thonny editor and then follow the steps below:
nding CircuitPython binary for your board., You can visit circuitpython.org/downlozads to download the binary.
E in this repository require CircuitPython va8.2.0 or higher.

ry libraries from Adafruit CircuitPython bundle. You can download the bundle from here. The libraries that usad in this
fersion are list in this table below.

Version
;Jf 1.6.1
::l)
| 1.1.10

gries of the lib folder to the CircuitPython device. The binary files should not be uploaded to lib folder in the device, they
3me hierarchy as the code.py fila.

of the code.py and paste it to the code.py file on the CircuitPython device.

the board.

mtatze 5601306 |

B Silabs Logo on the m:au-,-]

Inisaize VLSIL1X]

}

Setup imars]

&= SILICON LABS

Conclusions

&= SILICON LABS

Conclusions

= Silicon Labs is now actively supporting Circuit Python on xG24 boards
« Main features implemented:
» Digital GPIO support
Analog functions (DAC, ADC)
Serial interfaces (UART, SPI, 12C)
NVM and filesystem (including SD support)
Bluetooth LE

v

v

v

v

= The architecture allows for easy feature extension
« New board and SoC support
« Adding support for additional protocols.

= CircuitPython allows writing complex programs in few lines

=>» Good for learning and for quick PoC designs

36 ©2023 Silicon Labs Inc. All rights reserved. ‘s’ SILICON LABS

3)

Thank You

Watch ON DEMAND

Q&A

9 BLUETOOTH SERIES

teChm UPCOMING SESSIONS

NEW

OCT 26™ I Bluetooth App Development with CircuitPython

NOV 16™ | Enhancing Bluetooth LE Advertising Range

with Novel Bits

FEB 23F%P

MAR 23RP

APR 20™

MAY 18™

JUN 15™

ON DEMAND

ML in Predictive Maintenance and Safety Applications
Unboxing: What's New With Bluetooth

What's New with Bluetooth Mesh 1.1

Bluetooth Portfolio: What's Right for Your Application

The Latest in HADM With Bluetooth LE

&= SILICON LABS

	Default Section
	Slide 1
	Slide 2: Presentation Will Begin Shortly
	Slide 3: Agenda
	Slide 4: About CircuitPython

	General CircuitPython
	Slide 5: Origin of CircuitPython
	Slide 6: CircuitPython: Advantages and Drawbacks
	Slide 7: C-code Performance Not Always a Must

	Silabs and CircuitPython
	Slide 8: About Silicon Labs
	Slide 9: Addressing Makers Ecosystem
	Slide 10: Architecture
	Slide 11: Architecture
	Slide 12: Architecture
	Slide 13: Architecture
	Slide 14: Architecture
	Slide 15: Supported Boards
	Slide 16: Supported Boards
	Slide 17: Port Features
	Slide 18: Flash Memory and FileSystem
	Slide 19: Internal Peripheral Support
	Slide 20: External Peripheral Support
	Slide 21: Bluetooth LE Support

	Performance comparison
	Slide 22: Performance Comparison
	Slide 23: Performance Comparison
	Slide 24: Performance Comparison
	Slide 25: Performance Results
	Slide 26: Bluetooth LE Example
	Slide 27: Suggested Development Environment
	Slide 28: BLE Example features
	Slide 29: Simple Thermometer + Humidity Sensor Application
	Slide 30
	Slide 31: Sample Code
	Slide 32: Sample Code
	Slide 33: Some examples
	Slide 34: Sample Code
	Slide 35: Conclusions
	Slide 36: Conclusions
	Slide 37
	Slide 38
	Slide 39

