Tech Talks LIVE Schedule – Presentation will begin shortly

Silicon Labs LIVE:

Wireless Connectivity Tech Talks

Торіс	Date
Building a Proper Mesh Test Environment: How This Was Solved in Boston	Thursday, July 2
Secure Your Bluetooth Design with BG21/BG22	Thursday, July 23
New Bluetooth Mesh Light & Sensor Models	Thursday, July 30
Simplicity Studio v5 Introduction	Thursday, August 6
Long-Range Connectivity Using Proprietary RF Solution	Thursday, August 13
Wake Bluetooth from Deep Sleep Using an RF SIgnal	Thursday, August 20
Implementing a Bluetooth Network Co-Processor	Thursday, August 27

Fill out the survey for a chance to win a BG22 Thunderboard!

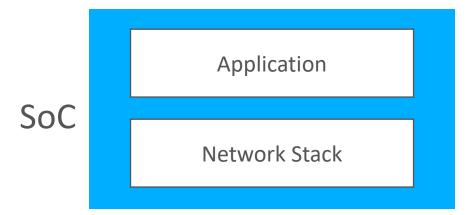
Find Past Recorded Sessions at: https://www.silabs.com/support/training

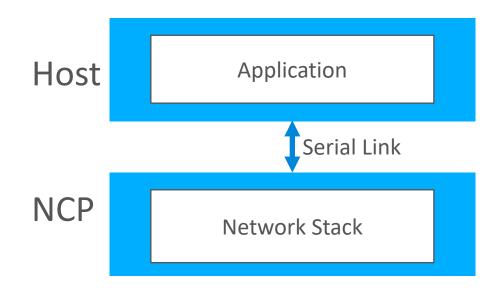
Implementing a Bluetooth® Network Co-Processor

AUG 2020

Agenda

- What is a Bluetooth Network Co-Processor?
- How does it work?
- How can you implement one?
- What all can you use it for?


Network Co-Processor (NCP): Definition


System on Chip (SoC)

 Application and Network Stack are both resident in the same device

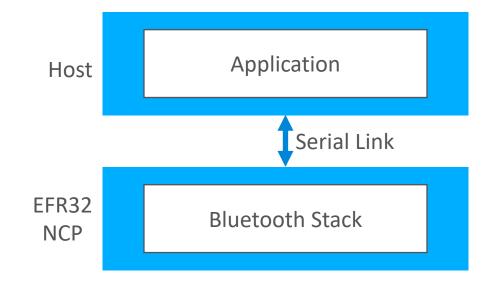
Network Co-Processor (NCP)

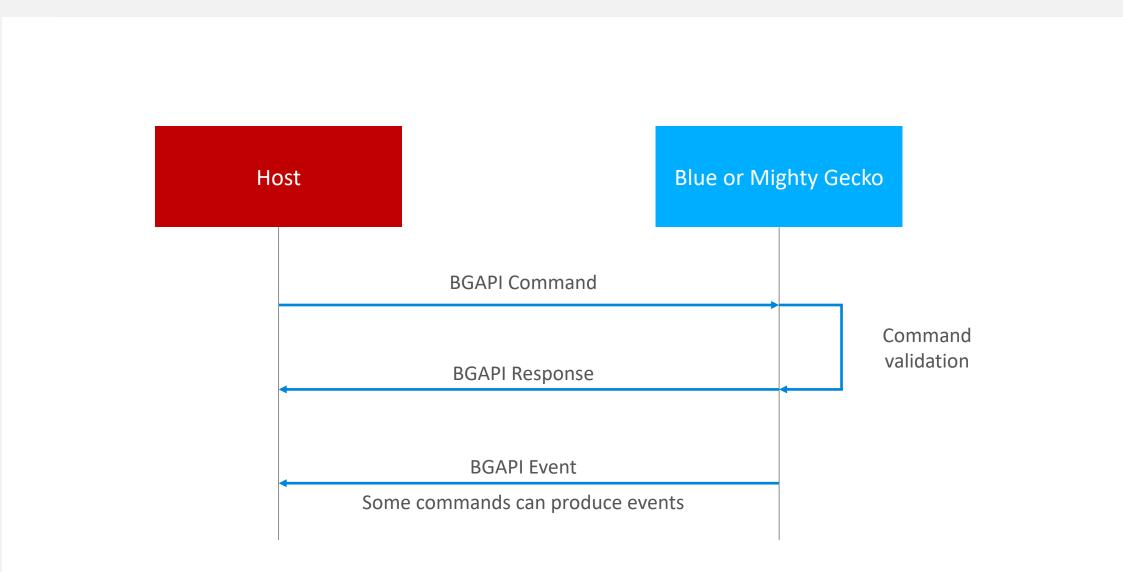
- Network Stack is on the NCP device
- Application is on a separate host processor
- A serial link is used to communicate between the host processor and the NCP

NCP Use Cases

The NCP architecture is typically used when it's easier or more efficient to manage the application on a separate processor than the processor on which the network stack resides.

- Gateways
- Test Fixtures
- Adding wireless interfaces to specialized SoCs
- High performance multi-protocol (SoC + NCP)

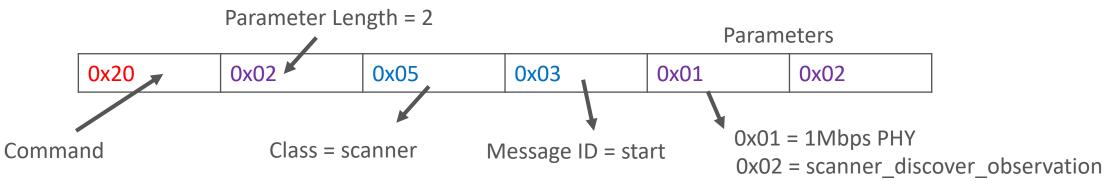



Blue Gecko NCP

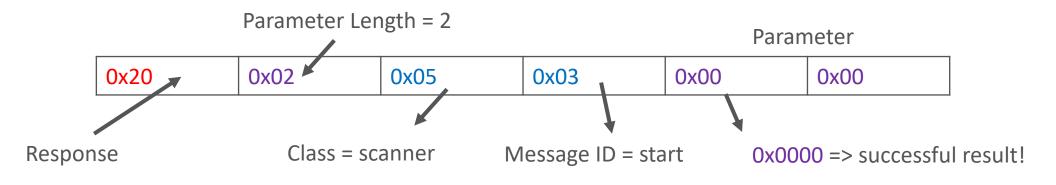
Well Defined Serial API (BGAPI)

- Command
- Response
- Event
- Portable C BGAPI library code included in the SDK
- XML API definition included for generating libraries for other programming languages
- Runs on any EFR32MG or EFR32BG device
- BGAPI NCP host code is identical to EFR32 SoC code!

BGAPI Serial Protocol Message Exchange

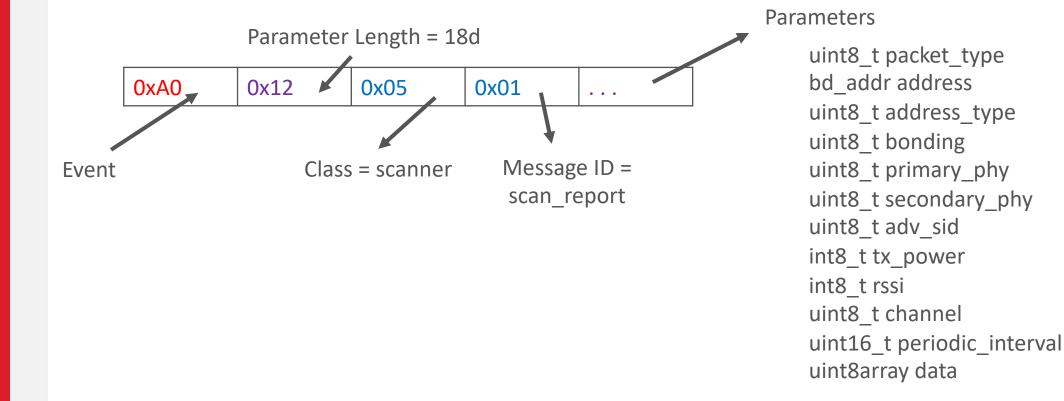

BGAPI Serial Protocol Packet Structure

Byte	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4-255
Explanation	Message type	Payload Length	Message Class	Message ID	Payload
Values	0x20: command 0x20: response 0xA0: event	0x00 – 0xFF	0x00 – 0xFF	0x00 – 0xFF	Specific to command, response, or event


Blue Gecko NCP: Example

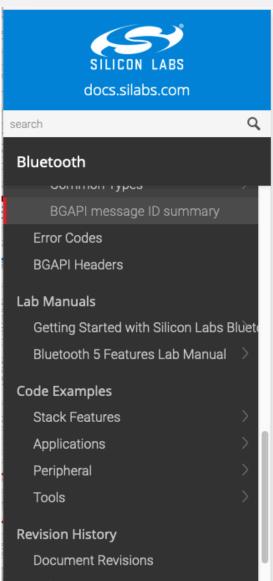
Command: sl_bt_scanner_start

 Begin scanning for advertising with previously configured parameters along with command parameters


```
Response: sl_bt_scanner_start
```


Blue Gecko NCP: Example

Event: sl_bt_evt_scanner_scan_report


Event triggered each time an advertising packet is received in scanning mode. Contains all the data for each received advertising (address, payload, etc.)

Blue Gecko NCP: Documentation

SILICON LABS	◆ sl_	bt_s	canner_start	0			
docs.silabs.com							
search Q	sl	_stat	us_t sl_bt_scann	er_start	(uint8_t	scanning_phy,	
Diveteeth					uint8_t	discover_mode	
Bluetooth					/		
Scanner V	Start	the GA	AP discovery procedur	e to scan for advertising devices on the sp	ecified scanning PHY or to perf	orm a device discovery. To cancel an	
sl_bt_evt_scanner_scan_report	ongo	oing dis	covery process use th	e sl_bt_scanner_stop command.			
scanner_discover_mode_t	The	invalid	parameter error will be	e returned if the scanning PHY value is inva	alid or the device does not supp	ort the PHY.	
sl_bt_scanner_set_timing	Paramet	ters					
sl_bt_scanner_set_mode		[in]	scanning_phy	Enum gap_phy_type_t. The scanning	nning PHY. Values:		
sl_bt_scanner_start				• gap_1m_phy (0x1): 1M PHY	,		
sl_bt_scanner_stop		5 3		 gap_coded_phy (0x4): Coded PHY 			
Synchronization >		[in] dis	discover_mode	Enum scanner_discover_mode_t. E scanner_discover_limited (0x0): D 	-		
Connection >				 scanner_discover_generic (0x1): [-		
GATT Client				 scanner_discover_observation (0) 	*		
GATT Server >							
NVM >	Returns						
Testing Commands	SL_STATUS_OK if successful. Error code otherwise.						
Security Manager	Events						
ота >							
Coexistence >	• sl_bt_evt_scanner_scan_report - This event is triggered each time an advertising packet is received. Packets are not filtered in any way, so multiple						
CTE Transmitter	events will be received for every advertising device in range.						

Blue Gecko NCP: Documentation

Release Notes

You are viewing documentation for version: 3.0 (latest) | 2.13 | Version History

BGAPI message ID summary

Summary of BGAPI command, response, and event IDs.

The following table summarizes the command, response, and event IDs used in the BGAPI protocol. The table shows the minimum payload length for each message. Messages that have an array parameter can have longer payload length depending on the length of the array.

Name	Туре	Minimum Payload Length	Class	Message ID
Scanner			- ·	
cmd_scanner_set_timing	0x20	0x05	0x05	0x01
<pre>rsp_scanner_set_timing</pre>	0x20	0x05	0x05	0x01
cmd_scanner_set_mode	0x20	0x02	0x05	0x02
<pre>rsp_scanner_set_mode</pre>	0x20	0x02	0x05	0x02
cmd_scanner_start	0x20	0x02	0x05	0x03
rsp_scanner_start	0x20	0x02	0x05	0x03
cmd_scanner_stop	0x20	0x00	0x05	0x05
rsp_scanner_stop	0x20	0x00	0x05	0x05
evt_scanner_scan_report	0xa0	0x12	0x05	0x01
Synchronization				

0 00

0.00

0 00

A 4A

BGAPI 3.x vs. 2.x

- BGAPI has been revised with the Bluetooth SDK 3.0
- The new API commands and events use a new naming convention to comply with Silicon Labs standards
- New BGAPI classes and commands have been introduced and some removed to make the API more transparent and consistent
- API changes are described in section 5 of <u>AN1255: Transitioning from the v2.x to the v3.x</u> <u>Bluetooth[®] SDK</u>
- BGAPI 2.x is not compatible with BGAPI 3.x!

AN1255: Transitioning from the v2.x to the v3.x *Bluetooth*[®] SDK

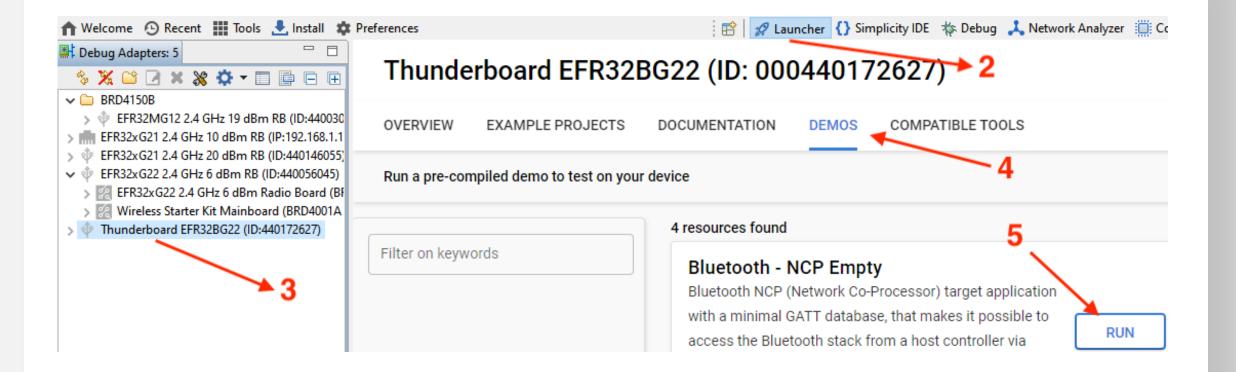
Bluetooth Software Development Kit (SDK) v3.0 contains a number of changes compared to Bluetooth SDK v2.x. Many of these changes are due to an underlying framework redesign that results in an improved developer experience within the new Simplicity Studio 5. Projects are now built on a component architecture. Simplicity Studio 5 includes project configuration tools that provide an enhanced level of software component discoverability, configurability, and dependency management. These include a Component Edliter, and a redesigned CATT configurator.

Г	
I	KEY POINTS
	Reviews differences in:
l	Software architecture
L	The API

Producing Blue Gecko NCP Target Firmware: Demo

Pre-built example NCP firmware images are available within Simplicity Studio for most Silicon Labs boards

- 1. Plug board into USB port
- 2. Go to the Simplicity Studio "Launcher" perspective
- 3. Select target board under "Debug Adapters"
- 4. Select "Demo".
- 5. Click "Run" next to "Bluetooth NCP Empty"



BG22 Thunderboard

Producing Blue Gecko NCP Target Firmware: Demo

Producing Blue Gecko NCP Target Firmware

For boards on which the pre-built demo firmware is not available (including your own custom hardware), you can create and build your own NCP firmware project

- **1**. Select File->Silicon Labs Project Wizard
- 2. Select target board or target device (if custom board).
- **3**. Select "Bluetooth NCP Empty"

New Project Wizard		_		×
Target, SDK, and Toolchai Select the target board, devic	n Selection e, SDK, and IDE/toolchain to use for the project.			
Target, SDK	Examples	Con	nfigurat	ion
Target Boards:				
Search or Select			*	
Thunderboard EFR32BG22 (B	D4184A Rev A01) 😒			
Target Device:				
Search or Select			~	
EFR32BG22C224F512IM40				
SDK:				
Select SDK Gecko SDK Suite: Bluetooth 3.	.0.2, EmberZNet 6.8.0.1, Flex 3.0.0.2, Micrium OS Kernel, OpenThread 1.0.0.2 (GitHu	.ıb-f41	1a4 👻	
	*	Mana	ge SDI	(s
IDE / Toolchain:				
Select IDE / Toolchain Simplicity IDE / GNU ARM v7.2	1		*	
CANCEL	BACK	т	FINIS	SH

Other Useful NCP Features

Custom BGAPI

- Implement custom BGAPI NCP commands for custom functionality in the NCP firmware
- Examples:
 - System temperature sensing
 - UI handling (LEDs, buttons, etc.)

Local Event Handling

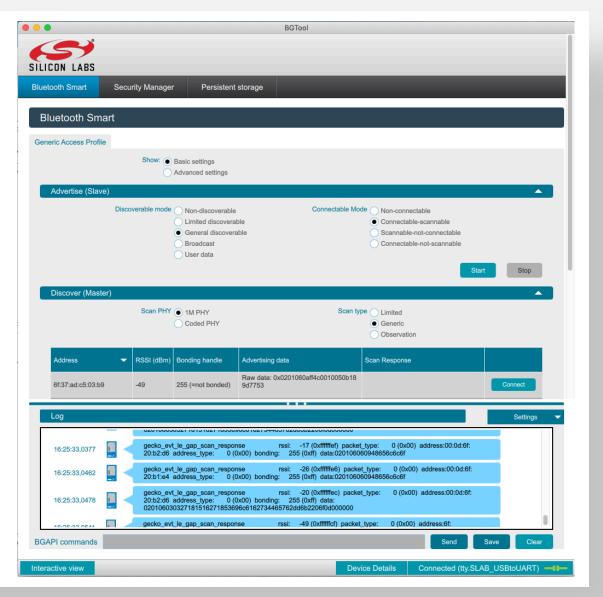
- Implementing local handlers in the NCP firmware reduces the amount of messages that the host has to service
- Example: advertisement filtering only send advertisement events to the host that meet specific criteria

Other Useful NCP Features

Low Power Support

- Implemented with wake-lock pins
- Wake-lock input: when asserted by external host, wakes and then sends event sl_bt_evt_system_awake to indicate to the host that it has woken up.
- Wake-lock output: NCP can assert prior to sending an event (allows host to sleep too)

Angle of Arrival / Angle of Departure NCP Support

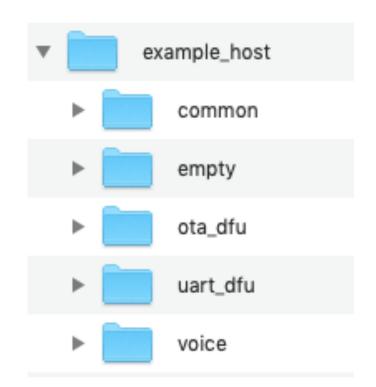

- EFR32BG22 supports CTE transmit and receive commands over NCP for Angle of Arrival / Angle of Departure implementations
- Wi-Fi Coexistence

Blue Gecko NCP Host Software: BGTool

Simplicity Studio includes an NCP host GUI utility called BGTool

Provides the ability to command the NCP to:

- Transmit advertising
- Receive advertising
- Establish a connection with a connectable device and browse the remote GATT database
- Perform DTM transmit and receive tests
- Execute arbitrary API commands


Blue Gecko NCP Host Software

The Silicon Labs Bluetooth SDK includes several example host applications as portable GCC C language projects with makefile:

Studio v5 (Gecko SDK 3.x): app\bluetooth\example_host\

Studio v4 (Gecko SDK 2.x): app\bluetooth\examples_NCP_host\

- empty An empty "shell" project to use to implement your own application
- ota_dfu Used to perform an OTA firmware update to a device running the Silicon Labs Apploader
- uart_dfu Used to perform a serial firmware update to the NCP device
- voice Example using BLE to collect ADPCM compressed voice data

Building Blue Gecko NCP Host Examples

Builds natively on Mac or Linux – just go to the folder using a terminal and type "make"

For Windows, there are two options (both also use gcc make):

1. MinGW

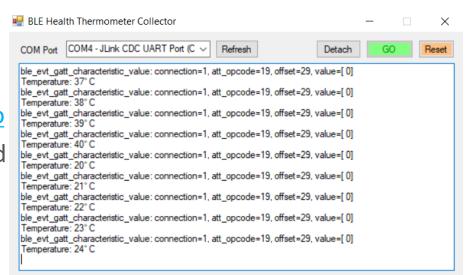
- Minimalist GNU development environment for Windows
- Builds <u>native</u> MS-Windows command-line applications
- https://mingw.org/

2. Cygwin

- POSIX Emulator for Windows
- Build executables that run within the Cygwin environment
- http://cygwin.com/

3rd Party Blue Gecko NCP Host Software

There are several Blue Gecko NCP host implementations that are not official Silicon Labs releases, but are quite useful:


<u>https://github.com/jrowberg/bglib/tree/master/BlueGecko</u>

This repo includes API 2.x Blue Gecko NCP host libraries and example projects for both MS Visual C# and Python 3

https://github.com/kryoung-silabs/

This repo includes a few additional API 2.x BGLIB C library example projects

- soc-thermometer-client: Connects to multiple health thermometer server devices and displays the temperature readings
- BLETest: A general purpose NCP host RF test utility

<pre>\$./exe/thermometer-clien Starting up Resetting NCP target</pre>	nt /dev/ttyAC	M0 115200 1
BLE Central started		
ADDR TEMP RSSI ADDR 2a9b 29.90C -28dBm 0000		ADDR TEMP 0000 0.00C

Silicon Labs' Bluetooth Module Families

	SILICAN LARS Blue Geeko BGM13P	BILLIEGH LABS BIGM13S	BGM210P	BGM210L	BGM220P (Q3'20)	EGM220S (Q3'20)
Protocols	5.1 and mesh (1M, 2M, Coded PHY and AE)	5.1 and mesh (1M, 2M, Coded PHY and AE)	5.1 and mesh 1.0 (1M, 2M, Coded PHY and AE)	5.1 and mesh 1.0 (1M, 2M, Coded PHY and AE)	5.2 and mesh 1.0 LPN (1M, 2M, Coded PHY, AE and AoA/D)	5.2 and mesh 1.0 LPN (1M, 2M, Coded PHY, AE and AoA/D)
EFR32 SoC	BG13	BG13	BG21	BG21	BG22	BG22
Antenna	Built-in or U.FL	Built-in or RF pin	Built-in or RF pin	Built-in	Built-in	Built-in or RF pin
Max TX power	+8 / +19 dBm	+8 / +18 dBm	+10 / +20 dBm	+12.5 dBm	+8 dBm	+6 dBm
Sensitivity (1M)	-94.8 dBm	-94.1 dBm	-97 dBm	-97 dBm	-98 dBm	-98 dbm
Flash (kB)	512	512	1024	1024	512	512
RAM (kB)	64	64	96	96	32	32
GPIO	25	30	20	12	24,25	25
Operating Voltage	1.8V – 3.6V	1.8V-3.6V	1.8-3.8V	1.8-3.8V	1.71V – 3.8V	1.71V - 3.8V
Operating Temp.	-40 to +85C	-40 to +85C	-40 to +125C	-40 to +125C	-40 to +105C	-40 to +105C
Dimensions W x L x H (mm)	13.0 x 15.0 x 2.2	6.5 x 6.5 x 1.4	13.0 x 15.0 x 2.2	13.0 x 15.0 x 2.2	13.0 x 15.0 x 2.2	6 x 6 x 1.3
Certifications	BT, CE, FCC, ISED, Japan, S-Korea and Taiwan	BT, CE, FCC, ISED, Japan & S-Korea	BT, CE, FCC, ISED, Japan & S-Korea	BT, CE, FCC, ISED, Japan & S-Korea	BT, CE, FCC, ISED, Japan & S-Korea	BT, CE, FCC, ISED, Japan & S-Korea

3rd Party Hardware – Darwin Tech Bluetooth 5.0 Dongle

- Agency Certifications
 - US US
 - Canada
 - Australia and New Zealand
 - Europe
- +7 dBm
- Bluetooth v5.0 including long range PHY support
- Based on EFR32BG13
- Available through Symmetry Electronics

Blue Gecko NCP Summary

- Highly flexible solution for implementing Bluetooth in a variety of different applications and architectures
- It's easy to get started on Silicon
 Labs development boards and available software examples
- It's easy to deploy with agency certified modules from both Silicon Labs and third parties

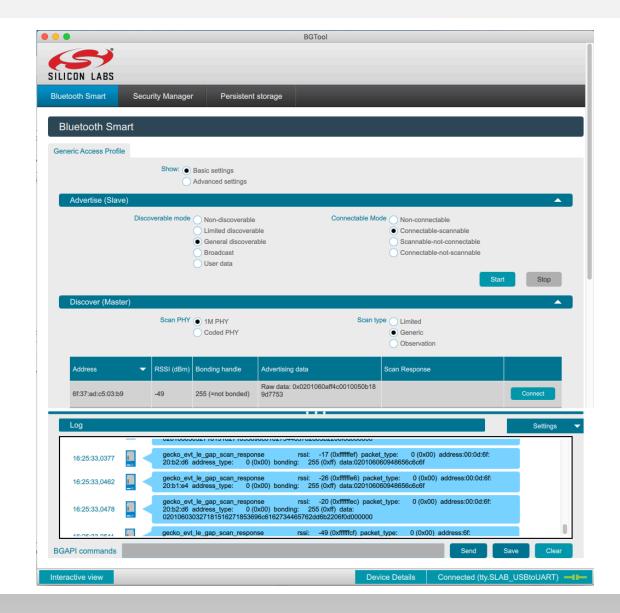
Useful References

AN1259: Using the v3.x Silicon Labs Bluetooth® Stack in Network Co-Processor Mode

AN1042: Using the v2.x Silicon Labs Bluetooth[®] Stack in Network Co-Processor Mode

These are general guides with details on getting started with using NCP mode. Also includes information on implementing custom BGAPI.

- AN1255: Transitioning from the v2.x to the v3.x Bluetooth[®] SDK
- KBA_BT_1602: NCP Host Implementation and Example


This example implements an NCP host on an EFM32 device. This is a good guide for implementing NCP hosts on a generic embedded processor (specialized SoC, etc.).

Local Event Handling on Bluetooth NCP

docs.silabs.com link explaining how to implement event handling local to the NCP

- https://github.com/jrowberg/bglib/tree/master/BlueGecko
- <u>https://github.com/kryoung-silabs/</u>
- <u>https://www.darwintechnologiesllc.com/products</u>

BGTool Demo

works with

SEPTEMBER 9–10, 2020 | VIRTUAL workswith.silabs.com

TWO DAYS OF TECHNICAL TRAINING FROM BEGINNER TO ADVANCED