

WELCOME

Silicon Labs LIVE: Wireless Connectivity Tech Talks

Tech Talks LIVE Schedule – Presentation will begin shortly

Silicon Labs LIVE: Wireless Connectivity Tech Talks

Торіс	Date		
Future Proofing for Connected Home Over IP	Tuesday, April 21		
Z-Wave Smart Home Solutions	Thursday, April 23		
Battery Optimization with BG22	Tuesday, April 28		
Max Performance on BLE – Simultaneous Connections, Beacons and Scanning	Thursday, April 30		
Max Performance on BLE – Simultaneous Connections, Beacons and Scanning SubGHz proprietary and Connect software stack	Thursday, April 30 Tuesday, May 5		

https://www.silabs.com/support/training

Please take the 3 question poll while waiting and be entered to receive a Thunder BG22 Kit.

Tech Talks LIVE Schedule

Торіс	Date
Future Proofing for Connected Home Over IP	Tuesday, April 21
Z-Wave Overview	Thursday, April 23
Battery Optimization with BG22	Tuesday, April 28
Max Performance on BLE – Simultaneous Connections, Beacons and Scanning	Thursday, April 30
SubGHz proprietary and Connect software stack	Tuesday, May 5
How to measure and debug network performance - Using Silicon Labs network analyzer	Thursday, May 7

https://www.silabs.com/support/training

Agenda

- Silicon Labs Bluetooth stack Features
- Silicon Labs Bluetooth Stack overall performance numbers
- Optimization based on your application needs
- Optimization for Responsiveness
- Throughput Optimization
- Optimizing Security

Bluetooth LE Software

	Application		72
ΑΡΙ			\$88
GATT	Security		
Attribute Protocol	Manager	GAP	
Bluetooth Link Layer			
Platform: Gecko Bootloader RAIL NVM3 emLib			

A Bluetooth 5.2 compliant Bluetooth stack, with:

- Bluetooth 5.2 Dynamic TX power control
- Bluetooth 5.1 Direction Finding
- Bluetooth 5.0 standard features
- Relevant Bluetooth 4.x features

Packed with advanced functionality

- Multiple connections and advertisers
- Concurrent advertising, scanning and LE connections
- Optimized throughput and power consumption

Built on top of the common EFR32 software platform

- Gecko bootloader
- emLib for MCU peripherals and drivers
- NVM3 key/value pair data storage with wear leveling
- RAIL radio driver

Bluetooth LE – Performance Figures

Source: Silabs UG136 - Application Developer's Guide

Feature	Value		
Simultaneous connections	Up to 8 Up to 16	(xG22 and xG1) (xG21, xG13, xG12)	
Throughput (EFR32-2-EFR32)	1M PHY: 2M PHY: 125k PHY:	~700kbps ~1300kbps ~100kbps	
Packets per connection interval	Not limited		
Link Layer packet size	Up to 251B		
ADV payload size	Up to 191B (p	per packet)	
ATT MTU	Up to 250B		
Max bondings	NVM3: Depends on NVM3 size allocation 14		

Updated 03-Apr-20

Optimize for Application - Bluetooth Tasks

- The Bluetooth Stack often needs to run Multiple tasks
- You can simultaneously:
 - Keep alive multiple connections
 - Scan for Beacons and new devices
 - Initiate a new connection
 - Send out advertisements

Optimize Application - Stack priorities

Optimization for Responsiveness: Connection & Advertising Parameters

Connection Parameter Tradeoffs - Cheat Sheet Connection Interval High Low Decreases Slave Power Consumption: Increases Slave Power Consumption: Decreases Master Power Consumption: Increases Master Power Consumption: Decreases Data Throughput: Increases Data Throughput: Slave-to-Master Data Latency: Slave-to-Master Data Latency: Increases Decreases Master-to-Slave Data Latency: Decreases Master-to-Slave Data Latency: Increases Slave Latency Value High Low/Zero Slave Power Consumption: Increases Slave Power Consumption: Decreases Master Power Consumption: Master Power Consumption: No Impact No Impact Data Throughput: No Impact Data Throughput: No Impact Slave-to-Master Data Latency: No Impact Slave-to-Master Data Latency: No Impact Master-to-Slave Data Latency: Increases Decreases Master-to-Slave Data Latency:

The choices of these parameters will have the largest impact on the performance of your device

- Default connection parameters may not be optimal for your application's power, latency, or throughput requirements
- A well-designed system will have dynamic connection parameters that change as required by the application
- Consider using the slave latency feature this is one of the most useful features for reducing power with minimal sacrifice to latency and throughput!

Source: SwaraLink Technologies – BLE Developer's Checklist https://www.swaralink.com/checklist/

Throughput Optimization – Attribute Protocol Operation

Write without response (unacknowledged write)

Write with response (acknowledged write)

(*) Radio-level acknowledge to ensure robust data transporte across the radio link

Source: KBA_BT_0104: Acknowledged vs Unacknowledged GATT operations

- Unacknowledged Operations are more desirable if a higher throughput is required
- On both acknowledged and unacknowledged GATT operations the data is reliably transported across the radio link.
- If the application can't process the write request, a response will not be sent and a timeout will occur after 30 seconds

Throughput Optimization – Attribute Protocol Operation

Source: KBA_BT_0104: Acknowledged vs Unacknowledged GATT operations

- Use notifications and write command (write without response) packets as opposed to indications and write requests (write with response)
- These procedures enable your device to send multiple packets during a single connection event, and provide a significant increase in throughput
- The throughput difference between Acknowledge vs unacknowledged Data Transfers can be >7x

Throughput Optimization – Large PDU length and MTU

BLE data transfer with Bluetooth default packet length (Bluetooth 4.0/4.1)

BLE data transfer with extended packet length (Bluetooth 4.2 and later)

KBA_BT_0404: Throughput with Bluetooth Low Energy technology

MTU (maximum transfer unit) specifies the number of bytes that can be sent within one GATT operation.

- The actual PDU length and ATT_MTU size used in a connection are negotiated between the central and peripheral devices.
- The higher the MTU size, the higher the throughput. Twice the MTU size doubles the throughput.
- The Existing 2.13.x Bluetooth SDK supports a 251B MTU

Throughput Optimization - Bluetooth PHY Choices

- Take advantage of the 2M PHY whenever available
- Switch PHYs as your application behavior changes
- Take advantage of the Built-in PA (BG22 6dBm, BG21/BG13 20dBm)

РНҮ	Symbol rate	Range multiplier	PDU Length	Minimum packet time	Maximum packet time	Max Theoretical throughput	Silabs Throughput
1M	1 M symbols/s	1x	0–257 B	80us	2.12ms	800 kbps	700 Kbps
2M	2 M symbols/s	0.8x	0–257 B	44us	1.064ms	1438 kbps	1300Kbps
125 kbps	1 M symbols/s	2x	0–257 B	720 µs	17.04 ms	112 kbps	100 Kbps

EFR32BG13 to EFR32BG13 Indoor Range: +10dBm, 125k PHY, PCB antenna

Bluetooth Long Range Estimator

The Bluetooth Range Estimator Calculate the expected range between two Bluetooth devices Receiver Sensitivity (dBm) 🚯 😷 Path Loss 🚯 select a Bluetooth PHY to see how it influences typical receiver sensitivity select a representative environment LE 500K (CODED) LE 125K (CODED) EDR 3M EDR 2M BR 1M LE 2M LE 1M -70 -110 Outdoor Industrial Office Home TYPICAL LE 125K Transmit Power (dBm) 🚯 📿 Transmitter Antenna Gain (dBi) 🚯 😷 Receiver Antenna Gain (dBi) 🕕 📿 -20 10 -10 10 20 **Estimated Range** 473 to 669 meters See Assumptions 📀

https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/range/

Optimizing Security

www.silabs.com/security

DPA Countermeasures Resist side channel attacks

BG21: Optimized for Secure Mains Powered Devices

🚯 Bluetooth 💋 zigbee dhread

BG21 can be paired with EFP to reduce active TX/RX current consumption

Radio

Up to +20 dBm TX Extremely good RX sensitivity Bluetooth 5.1 802.15.4

Current Consumption

8.8 mA RX (1 Mbit/s GFSK) 10.5 mA TX @ 0 dBm 33.8 mA TX @ 10 dBm 4-8uA EM2

World Class Protocol Stacks

Bluetooth 5.1 and Bluetooth mesh Zigbee 3.0 OpenThread Apple HomeKit

Compact Size 4x4 QFN32 (20 GPIO)

ARM Cortex-M33 with TrustZone

80 MHz w/ FPU and DSP Up to 96kB RAM and 1024kB flash 50.9 μA/MHz

Peripherals Fit for Purpose

3x USART, 2x I2C 1x 12-bit ADC, 2x ACMP 7x timers Up to 20x GPIO

Security

True Random Number Generator Hardware Accelerated Crypto Engine Secure Boot with root of trust Secure debug with lock/unlock DPA Countermeasures

With Secure Vault[™]

Anti tamper Secure attestation Secure key management and storage Advanced crypto

BG22: Optimized for Battery Powered Bluetooth LE, Mesh and AoX

Optimized

Secure Bluetooth 5.2 SoCs for High-Volume Products

Radio

Bluetooth 5.2 +6 dBm TX -99 dBm RX AoA & AoD

Ultra-Low Power

4.1 mA Radio TX 3.6 mA Radio RX 1.4uA EM2 with 32kB RAM 0.54uA in EM4 RTC in EM4

World Class Software

Bluetooth 5.2 Bluetooth mesh LPN Direction Finding

Compact Size

5x5 QFN40 (26 GPIO) 4x4 QFN32 (18 GPIO) 4x4 TQFN32 (18 GPIO)

ARM Cortex-M33 with TrustZone

76.8 MHz FPU and DSP 352/512kB of flash 32kB RAM

Peripherals Fit for Purpose

2x USART, 2x I2C, 2x PDM and GPIO 12-bit ADC (16 channels) Built-in temperature sensor with +/- 1.5 °C 32kHz, 500ppm PLFRCO

Security

True Random Number Generator Hardware Accelerated Crypto Engine Secure Boot with root of trust Secure debug with lock/unlock

Thunderboard BG22

- Bluetooth 5.2 BG22 Soc
- Relative Humidity Sensor
- Ambient Light and UV Index Sensor
- Hall effect sensor
- 6 axis Gyro and Accel Sensor (Asset Tags and Beacons)
- 2 Digital mems Microphones with PDM output
- Built-in Debugger
- Free iPhone and Android App
- **\$19.99**

Documents / User Guides

Main source of Documents - docs.silabs.com

KBA_BT_0407: Bluetooth Radio Task Priorities - <u>https://www.silabs.com/community/wireless/bluetooth/knowledge-base.entry.html/2018/09/28/bluetooth_radio_task-snm0</u>

KBA_BT_0404: Throughput with Bluetooth Low Energy technology - https://www.silabs.com/community/wireless/bluetooth/knowledge-base.entry.html/2015/08/06/throughput_with_blue-Wybp

KBA_BT_0104: Acknowledged vs Unacknowledged GATT operations - <u>https://www.silabs.com/community/wireless/bluetooth/knowledge-base.entry.html/2016/05/02/acknowledged_vs_unac-u6eO</u>

KBA_BT_0105: Bluetooth 5 Features - <u>https://www.silabs.com/community/wireless/bluetooth/knowledge-base.entry.html/2017/05/22/bluetooth 5 features-Hu9N</u>

Throughput Tester Code Example - <u>https://docs.silabs.com/bluetooth/latest/code-examples/stack-features/system-and-performance/throughput-tester-soc-mode</u>

UG136: Silicon Labs *Bluetooth* [®] C Application Developer's Guide - <u>https://www.silabs.com/documents/public/user-guides/ug136-ble-</u> <u>c-soc-dev-guide.pdf</u>

Apple Accessories Guidelines: <u>https://developer.apple.com/accessories/Accessory-Design-Guidelines.pdf</u>

Bluetooth SIG Range Estimator - <u>https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/range/</u>

Thank You | Questions