Tech Talks LIVE Schedule – Presentation will begin shortly

Tuesday, November 23	New Bluetooth Mesh Light & Sensor Models			
Tuesday, December 7	Learn more about Matter Development for the Holidays			
Tuesday, December 21	Secure IoT Products with Custom Part Manufacturing Service (CPMS)			

Respond to the poll to enter to win a Thunderboard Sense 2

Recording and slides will be posted to: www.silabs.com/training

We will begin in:

0:00

New Bluetooth Mesh Light & Sensor Models

Raoul van Bergen

The Market Drivers

The Drivers for Smart Wireless Lighting

BEING SMART

Energy Savings

40% of building's energy budget is lighting; save 30+% in costs using sensor driven control.

Productivity and Wellness

Color and brightness tuning to create more comfortable space; Boost productivity

ADVANTAGES OF WIRELESS LIGHTING

Simplified Installation

Avoids cabling for switches & sensors, App/App-less provisioning speeds up deployment

Value Added **Services**

Deploy location services for convenience, asset tracking; collect data for preventive maintenance; sensor data for better space utilization and lighting plans

Regulation

Must in states like California, US (Title 24)

Bluetooth Mesh – The Advantages

Smart Phone Connectivity

Ubiquitous and easy connectivity.

Optional Gateway

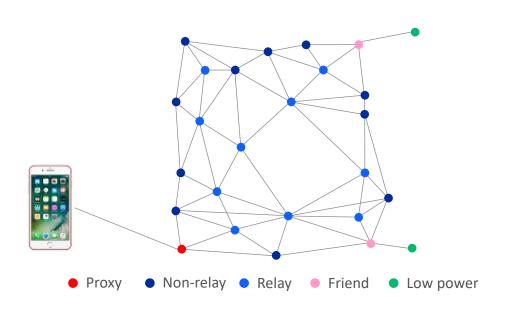
No single point of failure

Scalability

Few to a few thousand nodes

Extendibility & Flexibility

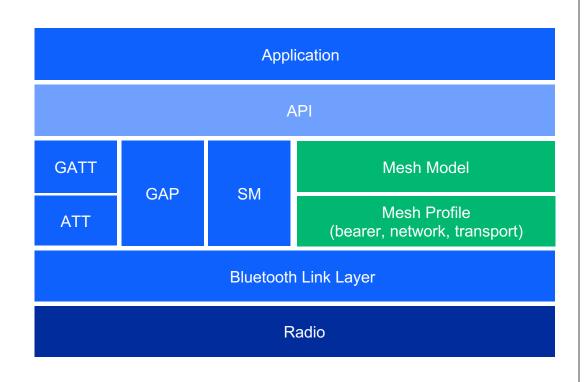
Easy to add nodes, partition based on space, reconfigure based on user preference


Value Added service

Easy to piggyback data transmission on already existing network

Bluetooth Mesh Fundamentals

Bluetooth Mesh Node Features


	Relay	Proxy	Low power	Friend
Send messages	Yes	Yes	Yes (limited)	Yes
Receive messages	Yes	Yes	Yes	Yes
Relay messages	Yes	Yes	No	Yes
GATT bearer	Yes/No	Yes	Yes/No	Yes/No
Battery operated	Typically no	Typically no	Yes	Typically no
Cache messages	No	No	No	Yes

- Relay: Relays messages within a Bluetooth mesh network
- Low power Node: Polls friends at a intervals for configuration changes etc; can sleep up to 4 days
- Friend: Caches messages for low power nodes while they sleep
- Proxy: Connects GATT and Bluetooth mesh worlds

Bluetooth Mesh – Network Architecture

Models	Function specific behaviors, states, state bindings, messages etc			
Foundation Models	Models for configuration and mgmt. of a mesh network			
Access Layer	Format for app. data, defining and controlling encryption, verify data for the network			
Upper Transport	Encryption, decryption & authentication of application data			
Lower Transport	Segmentation and re-assembly			
Network Layer	Defines message address types and network message formats for PDUs			
Bearer Layer	Advertisement – Uses adv/scan, most popular GATT – For devices that don't support Adv			
Bluetooth Low Energy	Base transport			

Silicon Labs Bluetooth Mesh Software

Mesh profile

- Relay, Proxy, Friend and Low Power features
- ADV and GATT bearers
- All other mesh profile features

Mesh model

Industry's most complete Mesh Model implementation

Simultanous Bluetooth mesh and LE operation

- Mesh with beaconing
- Mesh with LE connections
- Mesh with scanning
- Mesh with EnOcean switches

Security in Bluetooth Mesh

Security is mandatory

All messages are encrypted and authenticated

Dynamic Keys

Security keys can be changed over the life of the network

Protection Against Replay Attacks

Using Sequence number and IV Index

Addition and Removal of Nodes

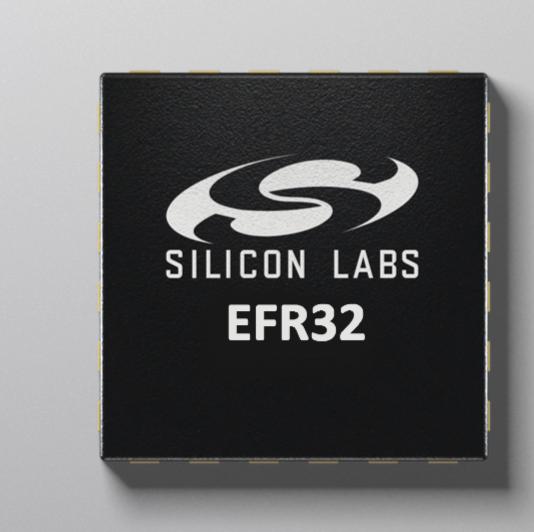
Secure process, prevents trash can attack

SEPARATION OF CONCERNS

Network Key

Must have, enables a node to be part of network; each subnet has own NetKey

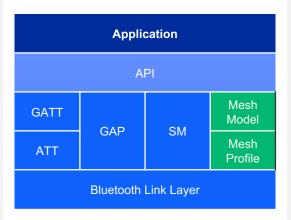
Application Key

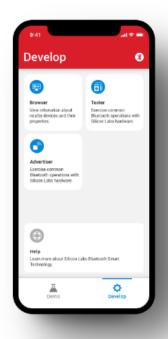

Associated with only one NetKey; Isolates different applications in the same network

Device Key

Each device has a unique one, known only to the provisioner

Silicon Labs' Solutions




The Hardware Portfolio

	Target applications	General purpose Bluetooth LE and mesh		Mains powered Bluetooth LE and mesh		Lowest power Bluetooth LE, Direction Finding and Bluetooth mesh LPNs		
	SoC	Series 1 – B/MG13		Series 2 - B/MG21	Series 2 - B/MG21		Series 2 - B/MG22	
	Bluetooth features	5.2 and Bluetooth mesh 1.0 (1M, 2M, LE Coded PHYs a		5.2 and Bluetooth Mesh 1.0.1 (1M, 2M, LE Coded PHYs and AE)		5.2 and Bluetooth mesh 1.0.1 LPN (1M, 2M, LE Coded PHYs, AE and AoA/D)		
O	Security	Hardware Crypto , TRNG		TRNG, Enhanced Crypto, Secure Boot & Debug, Secure Vault		TRNG, Enhanced Crypto, Secure Boot & Debug		
SoC	TX / RX (1M, GFSK)	+19 dBm / -95.8 dBm		+20 dBm / -97.5 dBm		+6 dBm / -99 dBm		
O)	TX Current (0 dBm)	10.5 mA		10.5 mA		4.1 mA 7.4 mA (6 dBm)		
	RX Current (1M, GFSK)	9.5 mA		8.8mA		3.6 mA		
	Flash (kB)	512		Up to 1024		Up to 512		
	RAM (kB)	64		Up to 96		32		
	Packages (mm)	7x7 QFN48, 5x5 QFN32		4x4 QFN32 (20x GPIO)		5x5 QFN40 (26x GPIO) 4x4 QFN32, TQFN32 (18x GPIO)		
		SILICAL LASS Blue Geschi GOMEST	SILCON LASS BOMIAS	BILCON LAIS BILCON LAIS BILCON LAIS		SILICON LABS BGMZZOP	SILICON LASS BOM22OS	
B S		B/MGM13P	B/MGM13S	B/MGM210P	B/MGM210L	B/MGM220P	B/MGM220S	
Modules	Antenna	Built-in or U.FL	Built-in or RF pin	Built-in or RF pin	Built-in	Built-in	Built-in or RF pin	
po	GPIO	25	30	20	12	24,25	25	
Š	Dimensions W x L x H (mm)	13.0 x 15.0 x 2.2	6.5 x 6.5 x 1.4	13.0 x 15.0 x 2.2	13.0 x 15.0 x 2.2	13.0 x 15.0 x 2.2	6 x 6 x 1.3	
	Certifications	BT, CE, FCC, ISED, Japan, S-Korea and Taiwan	BT, CE, FCC, ISED, Japan & S-Korea	BT, CE, FCC, ISED, Japan & S-Korea	BT, CE, FCC, ISED, Japan & S-Korea	BT, CE, FCC, ISED, Japan & S-Korea	BT, CE, FCC, ISED, Japan & S-Korea	

A Complete Solution for Mesh Network Development

xGM210P032 Wireless Gecko Mode

DEV KITS

Multiple physical interfaces to support advanced development and debugging

> **UART, Ethernet, USB** LCD, LED, buttons

STACK SOFTWARE

In-house developed stack Mesh v1.0.1 qualified* Support for all features and bearers

All security features supported

MOBILE APPLICATIONS

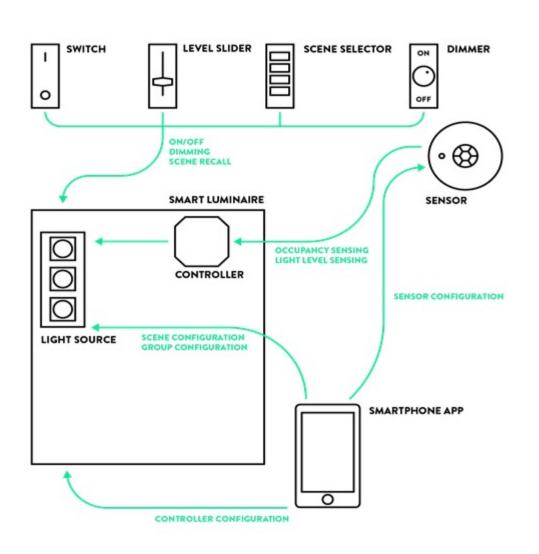
Bluetooth Mesh ADK and Reference applications and source code for iOS and Android

DEVELOPMENT TOOLS

Simplicity Studio with sample apps Mesh configurator

Network analyzer

Energy Profiler


Supported Bluetooth Mesh Models

Model Group	Model	Stack/APIs	Example app(s)	iOS APIs	iOS reference app	Android APIs	Android reference app
Vendor	Any vendor model	✓		✓		✓	
	OnOff	✓	✓	✓	✓	✓	✓
	Level	✓	✓	✓	✓	✓	✓
	Default Transition Time	✓	✓	✓		✓	
	Power OnOff	✓	✓	✓		✓	
	Power Level	✓		✓			
Generic	Battery	✓		✓		✓	
Generic	Location	✓		✓			
	Admin property	✓		✓			
	Manufacturer property	✓		✓			
	User property	✓		✓			
	Client property	✓		✓			
	Property	✓		✓			
	Lightness	✓	✓	✓	✓	✓	✓
Lighting	CTL	✓	✓	✓	✓	✓	✓
Lighting	LC	✓	✓	✓	✓	✓	✓
	HSL	✓	✓				
Sensors	Sensor	✓	✓	✓		✓	
	Scene	✓	✓	✓	✓	✓	✓
Time and Scenes	Time	✓	✓	✓	✓	✓	✓
	Scheduler	✓	✓	✓	✓	✓	✓

Lighting Network – Devices, Roles & Models

Components of a Wireless Lighting Solution

- Lighting controls (mains or battery powerd)
 - On/Off switches
 - Dimmers
 - Scene selectors
- Sensors (mains or battery powerd)
 - Occupancy
 - · Ambient Light Level
- Light sources and controllers
 - Controlled by lighting controls and/or sensors
- Optional smart phone app or gateway
 - Provisioning and configuration
 - Device control
 - Life cycle management (OTA, removing devices etc.)
 - Value added services

Light Sources / Luminaires

- Each luminaire is a node in the mesh n/w, can have multiple elements
- Can be single or multiple lights
- Can be combined with sensors (occupancy) and controllers
- Generally, act as Relay at min, can also act as Proxy and Friend.

Scenario	Models Used	Publish / Subscribe
On/Off	Generic OnOff Server	Subscribe
Light Level Control	Generic Power OnOff Server Generic Level Server Light Lightness Server	Subscribe
Light Color Temperature Control	Models from Light Level control + Light CTL server	Subscribe
Light Color Control	Models from Light Level control + Light HSL Server	Subscribe
Transition	Generic Default Transition Time Server	
Scene	Scene Setup Server Scene Server	
Sensor driven functionality	Light LC Server	Subscribe
Controller	Light LC Server Light LC Setup Server Light Lightness Server Light Lightness Setup Server	Subscribe

Key h/w and s/w to consider

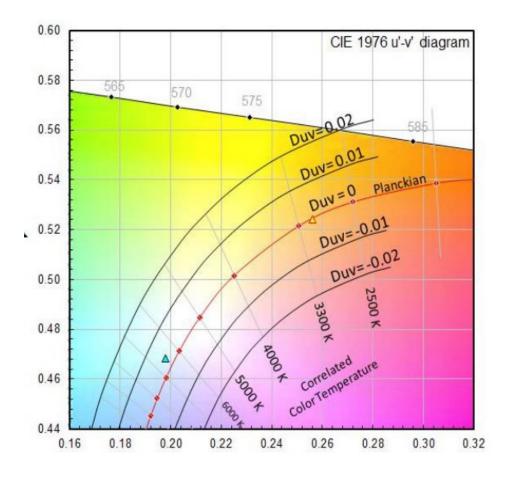
BG21

BGM210P

BGM210L

"Light" sample application.

Light HSL model *new*


- Light HSL model added to Mesh SDK 2.1 and Studio Universal Configurator (UC)
 - HSL = Hue, Saturation, Lightness
 - Light HSL model brings in the colors to the lights
 - HSL-color can be converted to RGB

```
H = Light HSL Hue / 65535
S = Light HSL Saturation / 65535
L = Light Lightness / 65535
if (S = 0) {
       R = L
       G = L
       B = L
else {
       if (L < 0.5) var 2 = L * (1 + S)
       else var 2 = (L + S) - (S * L)
       var 1 = 2 * L - var 2
       R = Hue 2 RGB( var 1, var 2, H + (1/3))
       G = Hue 2 RGB(var 1, var 2, H)
       B = Hue 2 RGB (var 1, var 2, H - (1/3))
Hue 2 RGB (v1, v2, vH ) //Function Hue 2 RGB {
       if (vH < 0) vH += 1
       if (vH > 1) vH -= 1
       if ((6 * vH) < 1) return (v1 + (v2 - v1) * 6 * vH)
       if ((2 * vH) < 1) return (v2)
       if ((3 * vH) < 2) return (v1 + (v2 - v1) * ((2/3) - vH) * 6)
       return (v1)
```


Difference of Light HSL model compared to Light CTL model

- The Light CTL model only controls
 - Color Temperature (warmness/coolness)
 - Delta UV (distance from the Black Body curve)
- So not all the colors

CTL Color Temperature
Delta UV scale illustration

Controls

- Switches / Dimmers / Scene selectors are examples of lighting controllers.
- Functionality will depend on the capabilities.
- Controls can be either mains powered or battery powered.
- Mains powered devices typically act as relays, battery powered are LPNs

Scenario	Models Used	Publish / Subscribe
On/Off	Generic OnOff Client	Publish
Light Level Control	Generic OnOff Client Generic Level Client Light Lightness Client	Publish
Light Color Temperature Control	Models from Light Level Control + Light CTL control	Publish
Light Color Control	Models from Light Level Control + Light HSL control	Publish
Transition	Generic Default Transition Time Client	
Scene	Scene Client	Publish
Sensor driven functionality		
Controller		

Key h/w and s/w to consider

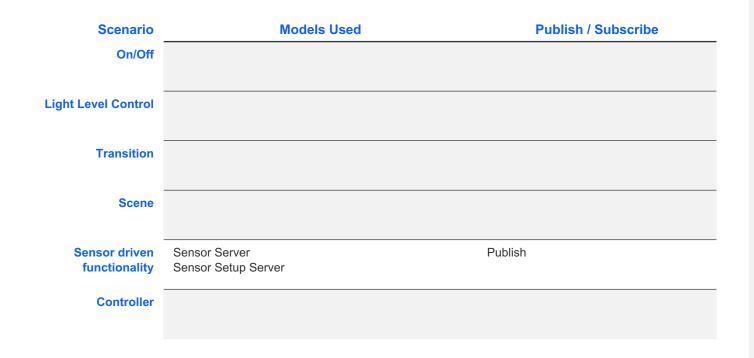
BG21

BGM210P

BG22

BGM220P

BGM220S


"Switch" sample application.

Sensors

- Occupancy sensors and ambient light sensors are the most common used in the lighting systems.
- Sensors can be either mains powered, or battery powered.

Key h/w and s/w to consider

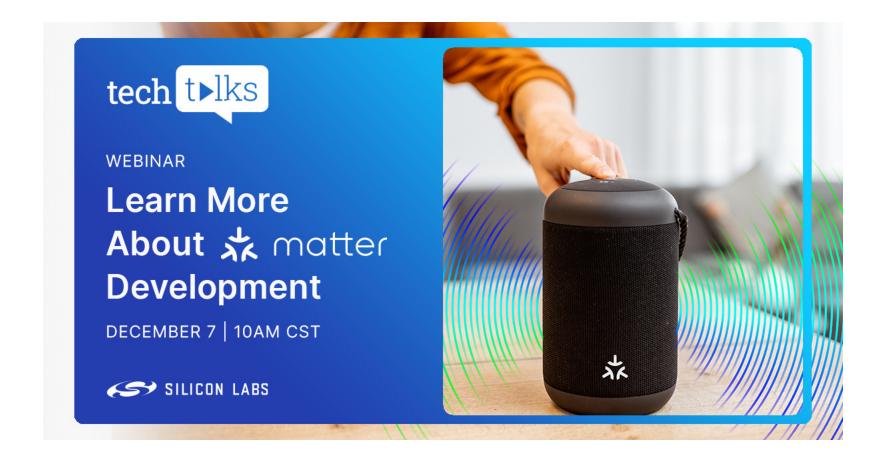
BG22

BGM220P

BGM220S

"Switch" sample application.

Demo



Out of Box Experience Bluetooth Mesh SDK

Summary

- Significant drivers for moving to Wireless Smart Lighting
 - Lower Cost
 - Better Convenience
 - Higher Productivity
- Bluetooth Mesh offers many advantages
 - Smart phone connectivity
 - Gateway less
 - Scalability
 - Value-added services deployment
- Silicon Labs has comprehensive solution of ICs, Modules, Software Stack and tools to efficiently address this lighting market
 - · Silicon Labs' Bluetooth Mesh SDK sample apps offer optimal starting point
 - Project Configurator and Bluetooth Mesh Configurator for application customization according to the customer requirements
 - PyBGAPI for test automation and Bluetooth Mesh ADK for mobile app development
 - Energy Profiler and Network Analyzer for advanced debugging
 - Hardware Kit offering for various use cases and needs

Join our next Tech Talk

Q&A

THANK YOU

