

WELCOME

Optimize Your Battery Power with BG22

Ryan Orton

Agenda

- EFR32BG22 overview
- Optimizing power consumption
 - RF parameters
 - Device specific parameters
- What's new?
 - Power Manager
 - BT 5.2 LE Power Control
- Going further: EFP PMIC

BG22 Overview

EFR32BG22: Optimized Battery Powered Bluetooth LE

Optimized

Secure Bluetooth 5.2 SoCs for High-Volume Products

Radio

Bluetooth 5.2 TX: -27 to +6 dBm RX: -96 to -107 dBm 1M, 2M and LE Coded PHYs AoA & AoD

Ultra-Low Power

3.5 mA TX (radio)
2.6 mA RX (radio)
1.4 μ A EM2 with 32 kB RAM
0.5 μ A w/ RTC in EM4

World Class Software

Bluetooth 5.2 Bluetooth mesh LPN Direction Finding

Compact Size

5x5 QFN40 (26 GPIO) 4x4 QFN32 (18 GPIO) 4x4 TQFN32 (18 GPIO)

ARM Cortex-M33 with TrustZone

38.4/76.8 MHz 352/512 kB of flash 32kB RAM

Peripherals Fit for Purpose

2x USART, 2x I2C, 2x PDM and GPIO 12-bit ADC (16 channels) Built-in temperature sensor with +/- 1.5 °C Built-in 32 kHz, 500ppm sleep clock

Security

AES128/256,SHA-1, SHA-2 (256-bit) ECC (up to 256-bit), ECDSA and ECDH True Random Number Generator (TRNG) Secure boot with RTSL Secure debug with lock/unlock

Extending Battery Life in Bluetooth Applications

Location Services	Data Transfer		
Advertising 10 bytes every 1000ms	Connected to a phone at 2000ms interval		
TX at 0dBm and using 1 channel	Using 2M PHY and transmitting 10 Byte / packet		
Average current: 3.7μA	Average current: 4.0μA		
5+ years on CR2032 10+ years on a CR2354			

Optimizing Battery Life

- RF Parameters that affect average current consumption
 - TX power
 - Advertising/connection intervals
 - Number of advertising channels
 - Connectable mode configuration
 - Payload
 - Choice of PHY
- Device-specific parameters
 - PA mode
 - Crystal settings
 - Voltage scaling
 - Debug configuration

RF Parameters

Advertisement Specific Parameters

Advertising interval

- The longer the interval, the lower the power consumption
- Tradeoff: Latency

Channel count

- Energy can be spared when sending the packets on only 1 or 2 channels
- Tradeoff: Discoverability is limited

Payload

- If the packet contains less payload, the radio can be switched off faster
- Tradeoff: Data

Connectivity

- If the advertiser is connectable, the radio will switch to RX mode to listen for connection requests
- If it is not connectable, the radio will be switched off immediately after advertising

Connection Specific Parameters

- Connection interval
 - The longer the interval, the lower the power consumption
 - Tradeoff: Latency
- PHY (2M, 1M, LE Coded PHY)
 - 2M PHY = shorter TX time
 - LE Coded PHY = longer range
 - Tradeoff: Compatibility and range
- Peripheral Latency
 - Allows the peripheral to skip connection intervals without dropping the connection
 - Tradeoff: Latency

Device Specific Parameters

PLFRCO – Precision Low Frequency RC Oscillator

- Using a precision 32k crystal can reduce overall current consumption.
 - EM2 state with an external crystal consumes 1.4uA
- Precision LF RC Oscillator can be used in place of an external 32k crystal
 - 500 ppm accuracy achieved with temperature sensing and calibration
- EM2 current consumption in precision mode
 - EM2 state with LFRCO consumes 1.7uA in stable temperature

Battery Optimization – Power Amplifier

- The BG22 has a OdBm PA optimized for extended battery life in personal area network devices.
 - Such as Wearables, heart rate monitors, and blood glucose monitors.
- The PA of the BG22 has different operating modes: High Power and Low Power.
 - With High power mode a TX of OdBm will require more power than if it is configured for Low Power mode.
 - High Power Mode TX at 0dBm consumes 5.2mA
 - Low Power Mode TX at 0dBm consumes 4.2mA

Save Power by using the DC/DC – Energy Management Unit

- The EFR32BG22 can consume
 - 2mA while in EM0
 - 2uA while in EM2
- Utilize the internal DC/DC for better power efficiency.
- Using the DC/DC can reduce the EM0 current consumption to
 - 1.32mA while in EM0 (30% energy savings)
 - 1.5uA in EM2 (25% energy savings).
- DC/DC converter operates down to 2.2V
- Utilize the VDD Comparator
 - The EMU contains a VDD Comparator to help monitor the main supply voltage level.
 - The comparator will trigger an interrupt if the voltage drops below a configured value to allow the user to bypass the DC/DC converter.
- DC/DC requires an extra inductor and capacitor for operation.

Figure 12.4. DC-DC Power Configuration

Additional Optimizations

- The ARM debug unit can be shut down in EM2
 - As default it is enabled in the projects
 - After it is switched off, it can only be enabled again via Simplicity Commander
- Switch off VCOM/ debug log
 - Disable the usage of VCOM port and any debug prints in order to save energy

What's New? Power Manager and LE Power Control

EFR32BG22 Peripheral Set and Energy Modes

Power Manager and Energy Modes

LE Power Control

- New Feature in Bluetooth 5.2
- Allows master/slave to indicate whether they can change their TX power
 - Connection oriented not supported for advertising
- Golden Range optimal RSSI range for reception
 - RSSI is too low request to increase TX power
 - RSSI is in the optimal range no need to change
 - RSSI is too high request to decrease TX power

Going Further – EFP PMIC

EFR32BG22: Energy Management Unit (EMU)

- Energy Management Unit (EMU)
 - Manages energy modes
 - Power domains and routing
 - DC/DC control
 - Reset management
 - Brown Out Detectors
 - Supply Voltage scaling
 - Internal LDO control

EFR32BG22: Dynamic Voltage Scaling

Main

Supply

- Reduce current consumption
 - P_{dynamic} = alpha*C*V²*Freq
- Control Digital logic voltage
 - Clock frequency dependent
 - Energy mode dependent

VSCALE Setting	DECOUPLE Voltage	Operating Conditions	
VCCVIES	1 1 1 /	EM0/EM1 Operation up to 80 MHz	
VSCALE2	1.1 V	EM2 and EM3	
VCCALE1 1.0V		EM0/EM1 Operation up to 40 MHz	
VSCALE1	1.0 V	EM2 and EM3	
VSCALE0	0.9V	EM2 and EM3 Only	

- Internal LDO
- External supply
 - 12C
 - Direct Mode
 - I2C pins become push-pull
 - EMU controls the pin directly

EFR32BG22: Internal LDO Control

Disable internal Digital LDO

 $I_{IN BUCK} = I_{IN LDO}$ * Efficiency_LDO / Efficiency_BUCK $I_{IN BUCK} = (58 - 71\%) * I_{IN LDO}$

Main Supply - AVDD Analog Blocks

DVDD CORE

DVDD CORE

Flash Voltage Digital

DECOUPLE

Digital

Logic

I CORE

DC/DC

Supply DECOUPLE from external supply

- DC/DC buck converter
- Reduce core supply current (I VDD CORE) by 29-42%

 V_{DECOUPLE}

0.9-1.1V

Analog

Infrastructure

Energy Friendly Power PMIC

Figure 3.1. EFP01 Block Diagram

- Multiple output voltage rails (3)
 - 150mA/rail max load with up to 94% efficiency
- Supports broad range of input voltage and battery chemistry
 - 0.8-1.8 volts and 1.8-5.5 volts
 - Extends EFR/EFM support below 1.7v and above 3.8v
- Optimized for battery operation
 - Integrated, loss-less coulomb counter
 - Prevents primary cell corrosion no leakage under 1.4 v
 - Inrush current control for batteries with high internal resistance
- Software configurable
 - OTP configuration for stored startup configurations
 - I2C command/control interface for dynamic configuration changes
- Low current
 - 250 nA quiescent current with one output enabled
 - Low as 30nA in EM4
- 3x3 mm QFN20 package

23 Silicon Labs Confidential

Summary

- RF Parameters that affect average current consumption
 - TX power
 - Advertising/connection intervals
 - Number of advertising channels
 - Connectable mode configuration
 - Payload
 - Choice of PHY
- Device-specific parameters
 - PA mode
 - Crystal settings
 - Voltage scaling
 - Debug configuration
- Power manager and LE Power Control
- EFP PMIC

IoT Hardware Development Tools – Feature Comparison

	Explorer Kit	Dev Kit	Pro Kit
Debug Speed	1.6MHz	1.6MHz	8MHz
Debug USB	-		
	Full Speed	Full Speed	High Speed
Packet Trace Interface (PTI)	\bigcirc	\bigcirc	2 x
Breakout Pads	\bigcirc	\bigcirc	\bigcirc
Pushbutton s & User LEDs	\bigcirc	\bigcirc	\bigcirc
Virtual COM	\bigcirc	Ø	Ø
Coin cell battery holder	_	\bigcirc	\bigcirc
On-board Sensors	_	Ø	$\overline{\Diamond}$
Battery Pack Connector	_	\bigcirc	\bigcirc
Radio Board Connectors	_	_	\bigcirc
EXP Connector	_	_	\bigcirc
Display	_	-	\bigcirc
Debug OUT	_	_	EFM8/32, EFR32, EZR32
Debug Ethernet	_	-	100 Mbit/s
Energy Monitor (AEM)	_	-	\bigcirc
3 rd Party Hardware addons	\bigcirc	-	-

Explorer Kit	Dev Kit	Pro Kit
 Lowest price point 	 Single device development board 	 Modular de
On-board debugger and ignal breakouts		 Advanced of
signal breakoutsMinimal on-board features	 On-board debugger and signal breakouts 	Energy pro debug
- Ord worth bond work on a constant	On-board sensors	J
 3rd part hardware support 	 Impressive out-of-the-box 	Ethernet for
 New Category 	demos	 Designed to EFR32 devi
	- Fuglistian from	

Evolution from Thunderboard

- development platform
- development use cases
- ofiling and external device
- for large network test
- to maximize reuse of vices
- Evolution from WSTK

Supported

Silicon Studio 5

Simplified Developer Experience

- Simplicity Studio 5
 - Interface
 - Fresh, new & simplified
 - Intuitive out-of-the-box experience
 - Fast access to developer resources
 - Linux, Mac & Windows
 - Tools
 - Configuration utilities
 - Compiler
 - Error & validation
 - IDE & command line support
 - Graphical hardware configurator
 - Energy Profiler visual energy analysis
 - Network Analyzer packet capture & decode

THANK YOU

