Tech Talks Upcoming Sessions – Presentation will begin shortly

Tuesday, February 22	Proprietary Sub-GHz: Leaping RF Performance and Improving Low Power Performance with FG23
Tuesday, March 8	Wi-Fi: Developing with Matter over Wi-Fi on the RS9116
Tuesday, March 22	Z-Wave: Unboxing the New 800 Series
Tuesday, April 5	Bluetooth: The Latest in BLE Developments

Welcome

Proprietary Sub-GHz: Leaping RF Performance and Improving Low Power Performance with FG23

Antonio Trujillo

Proprietary Sub-GHz: Leaping RF Performance and Improving Low Power Performance with FG23

February 2022 | Antonio Trujillo

Page 1

Agenda

- Where does FG23 fit in the market?
- **2** Overview of the FG23 (MCU & RF)
- **3** How to develop with FG23 (HW and SW tools)

4 Demos

1

Positioning the FG23 in the Sub-GHz market

An overview of the EFR32FG23

High Performance, low power and secure Sub-GHz Wireless SoC

High-Performance Sub-GHz Wireless SoC

Low Power. Long Range. Secure.

Sub-GHz SoCs Optimized for Metering & Home/Industrial Automation Applications

High Performance Radio

- Up to +20 dBm TX
- -110.1 dBm RX @ 920MHz, 50kbps GFSK
- -125.8 dBm RX @ 915MHz, 4.8kbps O-QPSK
- -125.3 dBm RX @ 868MHz, 2.4kbps GFSK
- RX Antenna Diversity
- · Single-ended RF port, no balun, low BOM cost

Low Power

- 25 mA TX @ +14 dBm, 925 MHz
- 85.5 mA TX @ +20 dBm, 915 MHz
- 4.2 mA RX @ 920 MHz, 400 kbps 4-FSK
- 1.2 µA EM2 with 16 kB RAM
- Preamble Sense

Wireless Technologies

- Amazon Sidewalk
- Mioty
- · Wireless M-BUS
- Proprietary

ARM® Cortex®-M33 with TrustZone®

- 78 MHz (FPU and DSP)
- · 512kB of flash
- 26 uA/MHz active current @ 78 MHz
- 1.5 uA EM2 (full retention)
- 64kB of RAM

Security

 Up to Secure Vault High (selected OPNs)

Low-power Peripherals

- EUSART, USART, I²C
- 16-bit ADC, 12-bit VDAC, ACMP
- 20 x 4 LCD Controller
- KEYSCAN
- LESENSE, Pulse Counter, PRS, LDMA

Compact Size

- 5x5 QFN40 (22/23 GPIO)
- 6x6 QFN48 (31 GPIO)

7

Secure Vault[™]

	Series 2 (xG2xA/B)		
Base	Mid	High	Feature	
\checkmark	√	✓	True Random Number Generator	
\checkmark	✓	✓	Crypto Engine	
\checkmark	✓	√	Secure Application Boot	
	√	√	Secure Engine	
	√	✓	Secure Boot with RTSL	
_	✓	✓	Secure Debug with Lock/Unlock	
—	Optional	√	DPA Countermeasures	 Des
_	_	✓	Anti-Tamper	Sec
		✓	Secure Attestation	ΙοΤ
_	-	✓	Secure Key Management	
_	_	✓	Advanced Crypto	ARM P
			silabs.com/security silabs.com/support/training	

SA Level 2 & 3

Silicon Labs Sub-GHz Wireless Portfolio Comparison

	Si4463	Si4467/8	xG13	xG23
Description	sub-GHz Transceiver	sub-GHz Transceiver	Dual Band SoC	sub-GHz SoC
Core (Max Frequency)	N/A	N/A	Cortex-M4 (38.4 MHz)	Cortex-M33 (78 MHz)
Max Flash	N/A	N/A	512 kB	512 kB
Max RAM	N/A	N/A	64 kB	64 kB
Security	N/A	N/A	Secure Vault Base	Secure Vault Mid Secure Vault High (select OPNs)
Supported Modulation	(G)FSK, 4(G)FSK, (G)MSK, OOK	(G)FSK, 4(G)FSK, (G)MSK, OOK	BPSK, (G)FSK, 4(G)FSK, (G)MSK, OOK	2(G)FSK, (G)MSK, OQPSK DSSS
Frequency Range (MHz)	142-175, 284-350, 420-525, 850- 1050	142-175, 284-350, 350-525, 850- 1050	110-191, 191-358, 358-574, 584- 717, 779-956	110-191, 191-358, 358-574, 584-717, 779-970
Preamble Sense Mode (PSM)	Yes	Yes	No	Yes
RX Sensitivity	-110 dBm (40 kbps GFSK 450 MHz) -106 dBm (100 kbps GFSK 450 MHz)	-109 dBm (40 kbps GFSK 915 MHz) -104 dBm (100 kbps GFSK 915 MHz)	-108.2 dBm (50 kbps GFSK 915 MHz) -105.1 dBm (100 kbps GFSK 915 MHz)	-110.1 dBm (50 kbps GFSK 920 MHz) -107.1 dBm (100 kbps GFSK 920 MHz)
Active Current	N/A	N/A	87 μA/MHz	26 μA/MHz
Sleep Current (EM2, 16 kB ret)	0.9 µA (transceiver only)	0.7 µA (transceiver only)	1.3 µA	1.2 μΑ
TX Current @ +10 dBm (915 MHz)	18 mA	19.7 mA	20.3 mA (433 MHz)	21.8 mA, 13.2 mA (w/DCDC) (868 MHz)
TX Current @ +20 dBm (915 MHz)	85 mA	88 mA	90.2 mA	92 mA, 85.5 mA (w/DCDC)
RX Current	13.7 mA (40 kbps GFSK 915 MHz)	13.7 mA (40 kbps GFSK 915 MHz)	8.6 mA (38.4 kbps GFSK 868 MHz)	4.0 mA (50 kbps FSK 915 MHz)
PSM Current	1.95 mA	1.95 mA	N/A	0.74 mA
Selectivity (1-Ch Offset, 915 MHz)	53 dB	55 dB	48.1 dB (4.8 kbps)	49.6 dB (4.8 kbps)
Operating Voltage	1.8 V to 3.8 V	1.8 V to 3.8 V	1.8 V to 3.8 V	1.71 V to 3.8 V
GPIO	4	4	16, 31	22/23, 31
Package	4x4 QFN20	4x4 QFN20	5x5 QFN32, 7x7 QFN48	5x5 QFN40, 6x6 QFN48

FG23 - New, returning, and improved peripherals

xG23 series Block Diagram

KEYSCAN & LCD controller

- New to EFRX32
- 1 8 columns (Drive) x 3-6 rows (Sense)
- 500 Hz (2ms) time base
- Hardware debounce FSM
- EM0/EM1 Full scanning
- EM2/EM3 Wake on any key press
- Modes of operation:
 - Single-press & multi-press

- EM2 mode operation
- Up to 4x20 segments
- Configurable biasing and contrast
- Charge redistribution
- Charge-pump for low-power supplies
- Autonomous blink and animations
 - Up to 8 segments
- RF retiming
- Frame and display counters

LESENSE – Low Energy Sensor Interface

Analog events Capacitive, inductive or resistive sensors

Generic MCU

Wake-up periodically to detect the events

FG23 - LESENSE Wake-up only on the events

FG23 - LESENSE

Conditional wake-up (e.g. on every 2nd event)

LESENSE – Low Energy Sensor Interface

Lowest power, autonomous sensing Resistive, inductive, capacitive Configurable and scalable

- Autonomous sensing in Deep Sleep
 - Up to 16 configurable channels
 - Leverage MCU peripherals
 - GPIO/VDAC for sensor excitation
 - ACMP/ADC for sensor measurement
 - Multiple trigger sources
 - 16 entry result buffer
 - Up to 4 sensor measurement evaluation
 - Threshold comparison, step detection or sliding window
- Programmable state machine
 - Automatically track system state
 - IRQ or PRS signal on state transition
 - PCNT for counting state machine transitions (PRS)
- Operates down to EM2, can wake-up CPU on configurable events

Honorable mentions

High Frequency Clock Output

HFXO

- Buffered sinewave output
 - Single crystal for dual-chip design
 - On-demand GPIO request (down to EM3)
- Early wake-up
 - Through PRS signal

Honorable mentions

HFXO

- Buffered sinewave output
 - Single crystal for dual-chip design
 - On-demand GPIO request (down to EM3)
- Early wake-up
 - Through PRS signal

DCDC

- 2 new operation modes (RAIL controlled)
 - Higher current for TX
 - Minimize RX interference (beneficial for <500 MHz PHYs)

iADC

- 12-bit resolution (11.7 ENOB) @ 1Msps (OSR = 2)
- 16-bit resolution (14.3 ENOB) @ 76.9 Ksps (OSR = 32)
- Increased FIFO size (7 words)
- Internal routing to VDAC output

Honorable mentions (continuation)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
ACMP Supply current from	IACMP	BIAS = 2, HYST = DISABLED	-	520	—	nA
AVDD pin		BIAS = 3, HYST = DISABLED	-	1.9	_	μA
		BIAS = 4, HYST = DISABLED	—	4.4	_	μA
		BIAS = 5, HYST = DISABLED	—	9.4	—	μA
		BIAS = 6, HYST = DISABLED	_	24	—	μA
		BIAS = 7, HYST = DISABLED	-	46	TBD	μA
ACMP Supply current from	IACMP_WHYS	BIAS = 2, HYST = SYM30MV	—	780	—	nA
AVDD pin with Hysteresis		BIAS = 3, HYST = SYM30MV	_	2.8	—	μA
		BIAS = 4, HYST = SYM30MV	—	6.3	—	μA
		BIAS = 5, HYST = SYM30MV	—	14	—	μA
		BIAS = 6, HYST = SYM30MV	—	35	—	μA
		BIAS = 7, HYST = SYM30MV	_	66	_	μA

ACMP

- 4 new bias levels
 - Low power & slow response

Honorable mentions (continuation)

ACMP

- 4 new bias levels
 - Low power & slow response
- VDAC
 - Dedicated output buffer
 - 4-word conversion FIFO
 - iADC and ACMP routing
 - Sensor excitation (LESENSE)

Honorable mentions (continuation)

ACMP

- 4 new bias levels
 - Low power & slow response

VDAC

- Dedicated output buffer
- 4-word conversion FIFO
- iADC and ACMP routing
- Sensor excitation (LESENSE)

EUSART

- Adds SPI functionality
 - @ 20 MHz Master mode
 - @ 10 MHz Slave mode
- Timeout function
- PCNT
 - 16-bit counter (up/down)
 - Single input counter and quadrature decoder

EFR32FG23 RF Improvements

Improved Sensitivity

Sensitivity improvement up to ~4 dBm

Simplified RF matching network

- Single-ended output
- No Balun required (Reduced BOM cost and footprint)

Antenna Diversity

- Switchless through internal RF switch and singleended paths
- External switch through GPIO control

Collision Restart

٠

Receiver demodulates the stronger packet

OOK modulation improvements

EFR32FG23 RF Improvements (continuation)

Overall radio IP improvements

- Improved Radio Configurator PHY calculation
- Improved baudrate tolerance ~12%
- Better support for short preambles in 2(G)FSK
 modulations
- Improved SNR (Signal to Noise Ratio)
- Improved AGC (Automatic Gain Control)

Direct mode improvements

- Available for 2(G)FSK and OOK modulations
- Demodulated signal on GPIO or buffer
- Two operation modes
 - Async and Sync
- Event on RSSI above threshold

PSM (Preamble Sense Mode)

Preamble Sense Mode

Hardware enabled long-preamble duty cycling

• Why Preamble Sense Mode?

- IoT devices are idle/sleep most of the time
- Data should be received occasionally
 - RX current (4-5 mA) vs sleep current (1.7 μA)
- Reduce time spent in RX
- What is Preamble Sense Mode?
 - Duty-cycled RX mode with timely wake-up so that no packet is missed
 - Energy is saved by entering a Low Power mode (LP) when the receiver is not used
 - Higher consumption on TX device
 - Maximum allowed latency determines preamble length

• Why Preamble Sense Mode?

- IoT devices are idle/sleep most of the time
- Data should be received occasionally
 - RX current (4-5 mA) vs sleep current (1.7 μA)
- Reduce time spent in RX
- What is Preamble Sense Mode?
 - Duty-cycled RX mode with timely wake-up so that no packet is missed
 - Energy is saved by entering a Low Power mode (LP) when the receiver is not used
 - Higher consumption on TX device
 - Maximum allowed latency determines preamble length

• Why Preamble Sense Mode?

- IoT devices are idle/sleep most of the time
- Data should be received occasionally
 - RX current (4-5 mA) vs sleep current (1.7 μA)
- Reduce time spent in RX
- What is Preamble Sense Mode?
 - Duty-cycled RX mode with timely wake-up so that no packet is missed
 - Energy is saved by entering a Low Power mode (LP) when the receiver is not used
 - Higher consumption on TX device
 - Maximum allowed latency determines preamble length
- Signal qualifier: 3-stage detector in hardware
 - 1st: Quick detection with high false rate
 - 2nd: Filter false detect
 - 3rd: Timeout if sync-word is not detected
- CFE engine to perform pattern recognition
- Configuration
 - Currently the radio configurator calculates timeout based on preamble length (maximum latency)
- Currently supports only 2(G)FSK PHYs

16 symbols @ 10 kbps = 1.6 ms = Rx_{on} RX_{duty} = 1.6 ms/1 s = **0.16 %**

 $RX_{consumption} = \sim 5mA \rightarrow \sim 8\mu A$

Developing with FG23

Hardware and software tools

EFR32FG23 development kits

SIMPLIFIED DEVELOPMENT KITS

CIFIED DEVELOPMENT KITS

Consult the user guide of your kit: **silabs.com/support/resources**

• U

CONTENTS

- Pro kits
 - 1x WSTK main board
 - 1x Radio board
 - Antenna(s)
 - USB cable

Dev kit

- 1x dev board
- Antenna(s)
- USB cable

AVAILABLE OFFERINGS

Order Part Number	Description	Resale
xG23-PK6067A	xG23 868-915 MHz +14 dBm Pro Kit	\$139
xG23-PK6068A	xG23 868-915 MHz +20 dBm Pro Kit	\$139
xG23-RB4204D	xG23 868-915 MHz +14 dBm Radio Board	\$49
xG23-RB4210A	xG23 868-915 MHz +20 dBm Radio Board	\$49
FG23-RB4265B	FG23 433 MHz +10 dBm Radio Board	\$49
FG23-DK2600B	FG23 868-915 MHz +14 dBm Dev Kit	\$39

29

ਯ

Simplified Developer Experience

Simplicity Studio 5

- Interface
 - Fresh, new & simplified
 - Intuitive out-of-the-box experience
 - Fast access to developer resources
 - Linux, Mac & Windows
- Tools
 - Configuration utilities
 - Compiler
 - Error & validation
 - IDE & command line support
 - Graphical hardware & software configurator
 - Project Configurator
 - Pintool, Radio configurator and GATT configurator
 - Energy Profiler visual energy analysis
 - Network Analyzer packet capture & decode

Radio Configurator – PHY customization and optimization

Project Explorer 😫 🕒 🎕 🖤 🖤 🗆	& *sink.isc 13
If the schooldeepings If the school	Silicon Labs Fiex SDK Generate 44 Previo
	Connect Notice Profile options Pr
Lekk Sizen Lab (44000497) ER32 files Geo. 2400/015 MHz Worles St	Modern Moder
	Description Resource Path Location Type

Tool to configure and optimize radio performance

- Rapid Radio configuration and prototyping
 - Predefined PHYs are tuned and tested by Silicon Labs for optimal performance
 - Custom PHYs can be configured via the Radio Configurator

Intuitive GUI to configure PHY parameters

- Frequency bands, channel spacing, modulation
- Bit rate, symbol maps, symbol coding, filtering
- Timing detection, AFC, AGC and many other
- Quick learning curve for new radio engineers
 - Human readable configurations
 - No need to learn specific radio registers and other IC internal information
- See AN1253 for technical details on the Radio Configurator

Flex SDK offerings

FLEX SDK Proprietary	
Documentation	
FLEX SDK	
Proprietary PHY (2.4 GHz or Sub-GHz)	
RAIL	
Gecko Bootloader	

Flex SDK

- Complete software development suite for proprietary wireless applications
- Flexible, easy-to-use
 - Radio Abstraction Interface Layer (RAIL)
 - Sample applications and extensive documentation
- Available through Simplicity Studio

Flex SDK offerings

Flex SDK

- Complete software development suite for proprietary wireless applications
- Flexible, easy-to-use
 - Radio Abstraction Interface Layer (RAIL)
 - Sample applications and extensive documentation
- Available through Simplicity Studio

Dev Path 1 - RAIL

- Simplified Radio API to access radio hardware
 - Common radio API across SoCs (Application portability)
 - Application portability across Silicon Labs products
 - No need to learn complex low-level radio registers
 - Silicon Labs wireless stacks are implemented on top of RAIL

Flex SDK offerings

Flex SDK

- Complete software development suite for proprietary wireless applications
- Flexible, easy-to-use
 - Radio Abstraction Interface Layer (RAIL)
 - Sample applications and extensive documentation
- Available through Simplicity Studio

Dev Path 1 - RAIL

- · Simplified Radio API to access radio hardware
 - Common radio API across SoCs (Application portability)
 - Application portability across Silicon Labs products
 - No need to learn complex low-level radio registers
 - Silicon Labs wireless stacks are implemented on top of RAIL
- Dev Path 2 Connect Stack
 - Proprietary Wireless Networking Stack
 - Small memory footprint (~75 kB Flash/~10 kB RAM)
 - Scalable up to 2,000 network nodes
 - Support for low power nodes
 - Over-the-air firmware updates
 - Security layer implemented

Beyond Studio – GitHub repositories

Search or jump to	7 Pull requests Issues Mai	ketplace Explore	¢ +• 🏇•
📮 SiliconLabs / applic	ation_examples (Public)		▼ [®] Fork 40
<> Code ③ Issues	11 Pull requests 🕑 Actions 🗄 Projects	🕮 Wiki 🕕	Security 🗠 Insights
្រី master 👻 រ៉ី bran	ch 🔊 0 tags Go to file Add fil	e - Code -	About
silabs-build-bot Auton	natically update all sub f988877 10 hours ago	3 153 commits	Start here to find code examples for Silicon Labs EFM8, EFM32, and EFR32 code examples.
.github/workflows	Adds pull request auto close feature	13 months ago	M Readme
🖿 bluetooth	Automatically update all submodules using re	2 months ago	☆ 109 stars
iot_utilities	Automatically update all submodules using re	22 days ago	24 watching
iniddleware	Automatically update all submodules using re	11 months ago	얗 40 forks
📄 platform	Automatically update all submodules using re	10 hours ago	
proprietary	Automatically update all submodules using re	last month	Releases
sensors	Updating submodules and READMEs	2 years ago	No releases published Create a new release
🖿 training	Automatically update all submodules using re	17 months ago	
🖿 wifi	Add wifi/wifi_combo_applications submodule	2 months ago	Packages
z_wave	Automatically update all submodules using re	11 months ago	No packages published
🖿 zigbee	Automatically update all submodules using re	2 months ago	Publish your first package
🗅 .gitmodules	Add wifi/wifi_combo_applications submodule	2 months ago	
README.md	Adding more README information	2 years ago	Contributors 6
i≣ README.md		Ø	S. 🔕 🥁 🔊 🕰

GitHub

Relevant repositories

- Proprietary
 - Proprietary_connect
 - Proprietary_rail
- Platform
 - Peripheral_examples
 - Platform_applications
 - Platform_hardware_drivers

Demos

0011000100000111000001110011001 1000 00110010 00101010 0 0101000.001 00000001 00 1010 00010111 00101010 00100 00110000 01000000 001001001 000 00100000 00101101 001 100 00110001 00010100 00011110 001 001 00010101 00100010 00 100011 00010011 0100 0010 00011 00110101 00100000 00 011 0011000 0111000 00101100 001100 00110010.001000 001 00101000 00110010 00101010 00110010 00100000 01 000 0011 0101000 00110110 0000000 10.00010111.00101010.0

00110010 0010

111001010111001001100010001 -----

001001000000010

RX Sensitivity demo

Background

PER – Packet Error Rate

- Ratio of loss vs received packets
- Performance of radio configuration

Relevant values

- Perror Reception error
- Psent Total packets sent

$$PER \ [\%] = \frac{P_{error}}{P_{sent}} * 100$$

RX power calculation

RX power < 5 dBm (*FG14*) or < 10 dBm (*xG23*)

xG23 vs FG14

••••• FG14P ••••• xG23

Preamble Sense Mode (PSM) demo

Sec.

Further references

Radio configuration

• AN1253: EFR32 Radio Configurator Guide for Simplicity Studio 5

RAIL API documentation

https://docs.silabs.com/rail/2.12/group-r-a-i-l-a-p-i

MCU demo

LESENSE LC-Sensor circuit

Further references

GitHub repository

• SiliconLabs/Platform_applications

Examples used in this demo

- platform_lcd_si70xx
- platform_lcsense_segmentLCD

Summary

The following topics were covered today:

- FG23 market
- FG23 overview
 - Great solution for Sub-GHz applications
- A look into the FG23 MCU perspective
 - New and returning peripherals (KEYSCAN, LCD, LESENSE...)
- A look into the FG23 RF improvements
 - Preamble Sense Mode (PSM) discussion
- Developing with FG23
 - Available kits
 - Available software (Flex SDK, GitHub examples)
- Demos
 - RX sensitivity
 - ► PSM
 - MCU GitHub examples

References

• Here is a list of references relevant to this presentation:

- EFR32FG23 landing page
 - Specs, Kits, technical documentation
- <u>Security</u>
 - Secure vault, tech talks and webinars
- docs.silabs.com
 - Main software documentation source including Studio and RAIL and Connect stacks
- <u>AN1253</u>
 - Radio configurator in Simplicity Studio v5
- GitHub application examples repository
 - Branch into other relevant repositories from here
- <u>AN972</u>
 - EFR32 RF Evaluation Guide (RX sensitivity demo)
- FG23 GitHub examples (MCU demo)
 - ► <u>Platform lcd si70xx</u>
 - Platform_lcsense_segmentLCD

SILICON LABS | tech tolks

Thank You

SILICON LABS | tech t lks

Q&A

Next Session

Developing with Matter over Wi-Fi on the RS9116

March 8^{th,} 2022 | 10AM CST

Save Your Seat

Continue Discussion in Our Community!

	SILICON LARS	nitere Pr	oducts v Share v Blog		datum web 🚊	
and the state of the		14 33 1 A. C. 40	11 11 14	l. L. F.	x - 53% &	
All i Alle 1	Q Search the S	ilicon Latis Community				8.9 <i>7///</i> 1
			re engineers logether to Ua vi			the state of the second se
		Reduce pert	Atriady nave an Account!			
		Lasers many allocat the Sil	con Lates Support Community			
	Explore the Community					
	All Blogs Projects	Groups				
		works with	ee: ش matt	or	* Bluetooth	
	Level 3 PSA Certification – What it is and Why it Matters	Works With 2021 is Coming - Join Us Group: Warks With 2021	Silicon Labs Backs N Standard to Unify io Connectivity	iew Matter T	Bluetooth@ 5.3 - What's new for IoT device makers and application developers?	
	Activity			Meet the (Community	
	Discussions Transing Articles A	0 Artistip		Fastured Man	hart Laaderboard	
	Most Recent Activity *		Ψ-	O x	fie	
	EFM32G ADC Scan Mode + PRS	= interrupt	o: 4: #:	G TALESON View Pro-	194 Ne	
	and the second second of the			e probas	1.	

How to Navigate:

- "Products" to troubleshooting forums
- "Applications" to discuss IoT
- "Share" to view example projects and existing groups
- "Blogs" to view and discuss thoughts from our specialists

