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Silicon Labs Bluetooth® Application Modes

System on Chip (SoC)

o ) ) Application
= Application and Network Stack are both resident in
Network Stack

the same device SoC

Network Co-Processor (NCP)

= Network Stack is on the NCP device Host

= Application is on a separate host processor

Serial Link
= A serial link is used to communicate between the host

processor and the NCP
NCP Network Stack




NCP Host Programming

@ Advertise- Peripheral  AdvertiseSet1x  + Smart Console
= Bluetooth NCP Commander 3 v con - ew
®» Easy-to-use GUI tool to issue BGAPI commands one-by-one B oo ot S —
= Portable: Works on most desktop platforms (Windows, Mac, ) nnsion e sl el
1 {8} Persistent Storage O user data 13:4024,530
Ubuntu Linux) A BB ..o .
= Not programmable
bt_advertiser_start(1,2, 2)
= C Host Sample apps © o e e .
= Complicated code (even though most parts are not to be Sl - =
to U C h e d ) Device Details |  J-Link Silicon Labs (440068025)
= Complicated to build on Windows platform (needs
Cygwin/MSYS2 environment)
= Portable for Posix environments

= Programmable

= Python BGAP

™

= Easy-to-use: commands can be issues one-by-one or in a script P t h 0 n

= Portable: Works on most host platforms (desktop and
embedded)

= Programmable




Python BGAPI — Use Cases

Produce easily portable host applications

= Can run the same application without modification on any
platform that supports Python 3 (Mac, PC, Raspberry Pi, etc.)

Mobile app emulation

= Use python to quickly implement a client with similar functionality
to an intended mobile app

= Allows decoupling of device firmware development from mobile
app software development

Automated hardware/software testing

= Python can be used to create a test application (either automated
or interactive) to connect to your device and exercise all of its
features
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Python BGAPI — Use Cases

# Everything bagel - m} X

Building applications with higher level functionality is much easier in
Python than C

r

= GUI functionality (Tkinter, PyQt)

This is the default Text should you decide ~ s
not to type anything

= TCP for MQTT (paho), HTTP (SimpleHttpServer), etc.
= File I/O (JSON, CSV, etc.)

= Data visualization and graphing (matplotlib, ggplot2, etc.)

Default Folder

= Cryptography (PyCrypto)
= Specialty hardware interfacing (test equipment, etc.)

= Machine learning

For anything you want to implement, there’s probably a python 0. .

library available to make implementation easier!




sing Python BGAPI

= Available at https://pypi.org/project/pybgapi/
pip install pybgapi

= Basic documentation provided at that URL
= Requires Python >= 3.6

= License: zlib/libpng

= APl documentation available at

http://docs.silabs.com/bluetooth/latest

pybgapi 1.1.0 P -

pip install pybgapi [N Released: Jun 28,2021

Python interface for the BGAPI binary protocol

Navigation

D Release history

&, Download files

Project links

A Homepage

&SP SILICON LABS

docs silabs.com

Bluetooth

Project description

PyBGAPI

This package provides a Python interface for the BGAPI binary protocol. It reads the BGAPI definition file and
dynamically generates a parser for it.

Getting Started

To get started with Silicon Labs Bluetooth software, see QSG169: Bluetooth® SDK v3.x Quick Start Guide.

In the NCP context, the application runs on a host MCU or a PC, which is the NCP Host, while the Bluetooth stack runs

# s|_bt_system_reset()

void sl_bt_system_reset ( uint8_t dfu
Reset the system. The command does not have a response but it triggers one of the boot events (normal reset or boot to DFU mode)
the selected boot mode.

NOTE: This command is available even if the Bluetooth stack has not been started. See s1_bt_system_start_bluetooth ford
how the Bluetooth stack is started

Parameters
[in] dfu Enum s1_bt_system_boot_mode_t. Boot mode. Values:
« sl_bt_system_boot_mode_normal (0x0): Boot to normal mode
« sl_bt_system_boot_mode_uart_dfu (0x1): Boot to UART DFU mode
* s|_bt_system_boot_mode_ota_dfu (0x2): Boot to OTA DFU made
Events

* sl_bt_evt_system_boot - Sent after the device has booted in normal mode.
* sl_bt_evt_dfu_boot - Sent after the device has booted in UART DFU mode.



Using Python BGAP!

Once installed, simply import:

>>> import bgapi

Establish the connector with the NCP. This can be done using a serial
port:

>>> connection = bgapi.SerialConnector (‘'COM3’) | )

Alternatively, a TCP socket can be used. The Silicon Labs Wireless
Starter kit (WSTK) connected via ethernet exposes VCOM on TCP
port 4901.:

>>> connection = ‘
bgapi.SocketConnector ((1'192.168.1.149",4901))




Using Python BGAP!

Next initialize bgapi with the connector and the xapi SDK API
definition file, for example in Gecko SDK Suite 3.2:

C:\SiliconLabs\SimplicityStudio\v5\developer\sdks\gecko sdk_suite\
v3.2\protocol\bluetooth\api\s|_bt.xapi

>>> node = bgapi.BGLib (connection,
‘sl bt.xapi’)

>>> node.open ()
>>> node.is open ()

True



BGAPI Serial Protocol Message Exchange

BGAPI Command

Blue or Mighty Gecko

BGAPI Response

Command
validation

BGAPI Event

Some commands can produce events




Using Python BGAPI — Example Command with Response

¢ s|_bt_system_hello()

In the Python interactive console:

>>> response = node.bt.system.hello()
>>> response sl_status_t sl_bt_system_hello { )
bt rsp system hello(result=0)

Verify whether the communication between the host and the device s

>>> response.result functional
| .

0
NOTE: This command is available even if the Bluetooth stack has not been
started. see sl_bt_system_start_bluetooth fordescription of how

the Bluetcoth stack is started.

Returns

SL_STATUS_OK if successful. Error code otherwise.
NOTE: result=0 is SL_STATUS_OK — so the command
executed successfully!
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Using Python BGAPI — Example Command with Event

12

In the python interactive console:

>>> node.bt.system.reset (0)

>>> events = node.get events()

>>> events

[bt evt system boot (major=3, minor=1,
build=256, bootloader=17563648, hw=1,
hash=3896915237) ]

>>> events[0] .major

3

>>> events[0] .minor

1

>>> hex (events[0] .hash)

'0xe8463525"

>>> hex (events[0] .bootloader)

'0x10c0000"

patch=2,

¢ sl_bt_system_reset()

void sl_bt_system_reset ( uint8_t dfu )

Reset the system. The command does not have a response but it triggers one of the boot
events (normal reset or boot to DFU mode) depending on the selected boot mode.

NOTE: This command is available even if the Bluetooth stack has not been started. See
sl_bt_system_start_bluetooth for description of how the Bluetooth stack is
started.

Parameters

inl dfu Enumsl_bt_system_boot_mode_t.Boot mode. Values:
« s|_bt_system_boot_mode_normal (0x0): Boot to normal mode
 sl_bt_system_boot_mode_uart_dfu (0x1): Boot to UART DFU mode
¢ s|_bt_system_boot_mode_ota_dfu (0x2): Boot to OTA DFU mode

Events

e sl _bt_evt_system_boot - Sent after the device has booted in normal mode.
e sl_bt_evt_dfu_boot - Sent after the device has booted in UART DFU mode.



Using Python BGAPI — Example Event Handler
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Event Handler Main Loop

def sl_bt_on_event(evt):
global node
global state
global service
global characteristic

while True:

try:
evt = node.get_events(max_events = 1)
if evt:
Call event handler
|_bt_on_event(evt[0])
except (KeyboardInterrupt, SystemExit) as e:

if node.is_open():

node.close()
print("Exiting...")
sys.exit(1)

if evt == 'bt_evt_system_boot':
print("Boot event received! Major version: {}, minor
version:{}".format(
evt.major, evt.minor))
elif evt == 'bt_evt_connection_opened":
print("connection opened")
#elif evt == 'bt_evt_other_event':
# Handle other events here
else:
print("Unhandled event: {}".format(evt))



Demo: Health Thermometer Client

= Use BG22 Thunderboard as our NCP device (NCP-

em pty demo) BG22 Thunderboard (soc-

BG22 Thunderboard (ncp-empty) thermometer)

= Use another BG22 Thunderboard as our health
thermometer server (soc-thermometer demo)

= Use a Python script on the host to:

= Scan for a device advertising the Health Thermometer
Service
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= Connect to the device

= Discover the services

= Discover the characteristics

= Subscribe to indications on the temperature measurement
characteristic within the Health Thermometer service

Print temperature measurement values (received via
indication) to the console, along with the RSSI of the link
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Flashing Firmware

Pre-built example NCP-empty and soc-thermometer firmware images are available within
Simplicity Studio for most Silicon Labs boards

L,

After plugging your board into the USB port... ;
1. Go to the Simplicity Studio “Launcher” perspective §
2. Select target board under "Debug Adapters” ;
3. Select the target SDK
4. Select “Example Projects and Demos”
5. Enable filtering on “Demos”
6. Click “Run” to flash the desired demo image  wireless starter
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Demo: Health Thermometer Client

Determine the serial port of your NCP for Python BGAPI init

= In Windows, Thunderboard/WSTK UART ports show up in the Device Manager as “Jlink CDC
UART Port”. Note, it’s easier to identify if only one device is plugged in.

;.4_ Device Manager

File Action View Help
e mE Hml B

v ﬁ Ports (COM & LPT)
i Bluetooth SPP Driver (COM12)
ﬁ Bluetooth SPP Driver (COM13)

= |n Mac, Thunderboard/WSTK UART ports show up as /dev/tty.usbmodem#t#ttti where
H#### is derived from the J-Link adapter serial number

mDebugAdapters:sj S . = [m] SlS /dev/tty.usbmodem*
(R IASIERE A id=1-Nc /dev/tty.usbmodem0004400606161
b1 EFR32MG12 2400/868-915 MHz 19 dBm RB (IP:192.168.1.149)
» M EFR32MG12 2400/868-915 MHz 19 dBm RB (IP:192.168.1.150) /dev/tty.usbmodem0004401726271
» < EFR32MG13 2400/915 MHz 19 dBm RB (ID:440060616) /dev/tty.usbmodem0004400743561

b < EFR32xG21 2.4 GHz 20 dBm.RE
- Thunderboard EFR32BG22
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