SILICON LABS

WELCOME

Simplify Your Bluetooth®
Design using Python Scripts

Kris Young

r
tech jidli&

Agenda

= Brief overview of Silicon Labs
Bluetooth® Network Co-Processors

="\Why use Python with Bluetooth®?

"How to implement Silicon Labs
Bluetooth® with Python

"Demo: Client for health thermometer
service

Silicon Labs Bluetooth® Application Modes

System on Chip (SoC)

o)) Application
= Application and Network Stack are both resident in
Network Stack

the same device SoC

Network Co-Processor (NCP)

= Network Stack is on the NCP device Host

= Application is on a separate host processor

Serial Link
= A serial link is used to communicate between the host

processor and the NCP
NCP Network Stack

NCP Host Programming

@ Advertise- Peripheral AdvertiseSet1x + Smart Console
= Bluetooth NCP Commander 3 v con - ew
®» Easy-to-use GUI tool to issue BGAPI commands one-by-one B oo ot S —
= Portable: Works on most desktop platforms (Windows, Mac,) nnsion e sl el
1 {8} Persistent Storage O user data 13:4024,530
Ubuntu Linux) A BB ..o .
= Not programmable
bt_advertiser_start(1,2, 2)
= C Host Sample apps © o e e .
= Complicated code (even though most parts are not to be Sl - =
to U C h e d) Device Details | J-Link Silicon Labs (440068025)
= Complicated to build on Windows platform (needs
Cygwin/MSYS2 environment)
= Portable for Posix environments

= Programmable

= Python BGAP

™

= Easy-to-use: commands can be issues one-by-one or in a script P t h 0 n

= Portable: Works on most host platforms (desktop and
embedded)

= Programmable

Python BGAPI — Use Cases

Produce easily portable host applications

= Can run the same application without modification on any
platform that supports Python 3 (Mac, PC, Raspberry Pi, etc.)

Mobile app emulation

= Use python to quickly implement a client with similar functionality
to an intended mobile app

= Allows decoupling of device firmware development from mobile
app software development

Automated hardware/software testing

= Python can be used to create a test application (either automated
or interactive) to connect to your device and exercise all of its
features

OTA
OTA Progress Packet Size 180
COF3F828-4ACT-44A5-90D0-577E19190CAB

APP ...0App-Inbox/application.gbl
10F1 148 884 BYTES

424

99.1 Kbps

0:05

Python BGAPI — Use Cases

Everything bagel - m} X

Building applications with higher level functionality is much easier in
Python than C

r

= GUI functionality (Tkinter, PyQt)

This is the default Text should you decide ~ s
not to type anything

= TCP for MQTT (paho), HTTP (SimpleHttpServer), etc.
= File I/O (JSON, CSV, etc.)

= Data visualization and graphing (matplotlib, ggplot2, etc.)

Default Folder

= Cryptography (PyCrypto)
= Specialty hardware interfacing (test equipment, etc.)

= Machine learning

For anything you want to implement, there’s probably a python 0. .

library available to make implementation easier!

sing Python BGAPI

= Available at https://pypi.org/project/pybgapi/
pip install pybgapi

= Basic documentation provided at that URL
= Requires Python >= 3.6

= License: zlib/libpng

= APl documentation available at

http://docs.silabs.com/bluetooth/latest

pybgapi 1.1.0 P -

pip install pybgapi [N Released: Jun 28,2021

Python interface for the BGAPI binary protocol

Navigation

D Release history

&, Download files

Project links

A Homepage

&SP SILICON LABS

docs silabs.com

Bluetooth

Project description

PyBGAPI

This package provides a Python interface for the BGAPI binary protocol. It reads the BGAPI definition file and
dynamically generates a parser for it.

Getting Started

To get started with Silicon Labs Bluetooth software, see QSG169: Bluetooth® SDK v3.x Quick Start Guide.

In the NCP context, the application runs on a host MCU or a PC, which is the NCP Host, while the Bluetooth stack runs

s|_bt_system_reset()

void sl_bt_system_reset (uint8_t dfu
Reset the system. The command does not have a response but it triggers one of the boot events (normal reset or boot to DFU mode)
the selected boot mode.

NOTE: This command is available even if the Bluetooth stack has not been started. See s1_bt_system_start_bluetooth ford
how the Bluetooth stack is started

Parameters
[in] dfu Enum s1_bt_system_boot_mode_t. Boot mode. Values:
« sl_bt_system_boot_mode_normal (0x0): Boot to normal mode
« sl_bt_system_boot_mode_uart_dfu (0x1): Boot to UART DFU mode
* s|_bt_system_boot_mode_ota_dfu (0x2): Boot to OTA DFU made
Events

* sl_bt_evt_system_boot - Sent after the device has booted in normal mode.
* sl_bt_evt_dfu_boot - Sent after the device has booted in UART DFU mode.

Using Python BGAP!

Once installed, simply import:

>>> import bgapi

Establish the connector with the NCP. This can be done using a serial
port:

>>> connection = bgapi.SerialConnector (‘'COM3’) |)

Alternatively, a TCP socket can be used. The Silicon Labs Wireless
Starter kit (WSTK) connected via ethernet exposes VCOM on TCP
port 4901.:

>>> connection = ‘
bgapi.SocketConnector ((1'192.168.1.149",4901))

Using Python BGAP!

Next initialize bgapi with the connector and the xapi SDK API
definition file, for example in Gecko SDK Suite 3.2:

C:\SiliconLabs\SimplicityStudio\v5\developer\sdks\gecko sdk_suite\
v3.2\protocol\bluetooth\api\s|_bt.xapi

>>> node = bgapi.BGLib (connection,
‘sl bt.xapi’)

>>> node.open ()
>>> node.is open ()

True

BGAPI Serial Protocol Message Exchange

BGAPI Command

Blue or Mighty Gecko

BGAPI Response

Command
validation

BGAPI Event

Some commands can produce events

Using Python BGAPI — Example Command with Response

¢ s|_bt_system_hello()

In the Python interactive console:

>>> response = node.bt.system.hello()
>>> response sl_status_t sl_bt_system_hello {)
bt rsp system hello(result=0)

Verify whether the communication between the host and the device s

>>> response.result functional
| .

0
NOTE: This command is available even if the Bluetooth stack has not been
started. see sl_bt_system_start_bluetooth fordescription of how

the Bluetcoth stack is started.

Returns

SL_STATUS_OK if successful. Error code otherwise.
NOTE: result=0 is SL_STATUS_OK — so the command
executed successfully!

11

Using Python BGAPI — Example Command with Event

12

In the python interactive console:

>>> node.bt.system.reset (0)

>>> events = node.get events()

>>> events

[bt evt system boot (major=3, minor=1,
build=256, bootloader=17563648, hw=1,
hash=3896915237)]

>>> events[0] .major

3

>>> events[0] .minor

1

>>> hex (events[0] .hash)

'0xe8463525"

>>> hex (events[0] .bootloader)

'0x10c0000"

patch=2,

¢ sl_bt_system_reset()

void sl_bt_system_reset (uint8_t dfu)

Reset the system. The command does not have a response but it triggers one of the boot
events (normal reset or boot to DFU mode) depending on the selected boot mode.

NOTE: This command is available even if the Bluetooth stack has not been started. See
sl_bt_system_start_bluetooth for description of how the Bluetooth stack is
started.

Parameters

inl dfu Enumsl_bt_system_boot_mode_t.Boot mode. Values:
« s|_bt_system_boot_mode_normal (0x0): Boot to normal mode
 sl_bt_system_boot_mode_uart_dfu (0x1): Boot to UART DFU mode
¢ s|_bt_system_boot_mode_ota_dfu (0x2): Boot to OTA DFU mode

Events

e sl _bt_evt_system_boot - Sent after the device has booted in normal mode.
e sl_bt_evt_dfu_boot - Sent after the device has booted in UART DFU mode.

Using Python BGAPI — Example Event Handler

13

Event Handler Main Loop

def sl_bt_on_event(evt):
global node
global state
global service
global characteristic

while True:

try:
evt = node.get_events(max_events = 1)
if evt:
Call event handler
|_bt_on_event(evt[0])
except (KeyboardInterrupt, SystemExit) as e:

if node.is_open():

node.close()
print("Exiting...")
sys.exit(1)

if evt == 'bt_evt_system_boot':
print("Boot event received! Major version: {}, minor
version:{}".format(
evt.major, evt.minor))
elif evt == 'bt_evt_connection_opened":
print("connection opened")
#elif evt == 'bt_evt_other_event':
Handle other events here
else:
print("Unhandled event: {}".format(evt))

Demo: Health Thermometer Client

= Use BG22 Thunderboard as our NCP device (NCP-

em pty demo) BG22 Thunderboard (soc-

BG22 Thunderboard (ncp-empty) thermometer)

= Use another BG22 Thunderboard as our health
thermometer server (soc-thermometer demo)

= Use a Python script on the host to:

= Scan for a device advertising the Health Thermometer
Service

L
w4
e
L L
L AL
o
®n
0
®n
®ox

A EEEEEE X
([EEEEEREERNR
Bss:s3®e6 sn

= Connect to the device

= Discover the services

= Discover the characteristics

= Subscribe to indications on the temperature measurement
characteristic within the Health Thermometer service

Print temperature measurement values (received via
indication) to the console, along with the RSSI of the link

14

Flashing Firmware

Pre-built example NCP-empty and soc-thermometer firmware images are available within
Simplicity Studio for most Silicon Labs boards

L,

After plugging your board into the USB port... ;
1. Go to the Simplicity Studio “Launcher” perspective §
2. Select target board under "Debug Adapters” ;
3. Select the target SDK
4. Select “Example Projects and Demos”
5. Enable filtering on “Demos”
6. Click “Run” to flash the desired demo image wireless starter

U e

- -

15

G 7
oxQg __SILICON LABS
- LLLELLEN L) L L R] .

-
- —
.-
»

—

- -
-

(XN NN N N N NN
B 3322 n 3 e e an

Demo: Health Thermometer Client

Determine the serial port of your NCP for Python BGAPI init

= In Windows, Thunderboard/WSTK UART ports show up in the Device Manager as “Jlink CDC
UART Port”. Note, it’s easier to identify if only one device is plugged in.

;.4_ Device Manager

File Action View Help
e mE Hml B

v ﬁ Ports (COM & LPT)
i Bluetooth SPP Driver (COM12)
ﬁ Bluetooth SPP Driver (COM13)

= |n Mac, Thunderboard/WSTK UART ports show up as /dev/tty.usbmodem#t#ttti where
H#### is derived from the J-Link adapter serial number

mDebugAdapters:sj S . = [m] SlS /dev/tty.usbmodem*
(R IASIERE A id=1-Nc /dev/tty.usbmodem0004400606161
b1 EFR32MG12 2400/868-915 MHz 19 dBm RB (IP:192.168.1.149)
» M EFR32MG12 2400/868-915 MHz 19 dBm RB (IP:192.168.1.150) /dev/tty.usbmodem0004401726271
» < EFR32MG13 2400/915 MHz 19 dBm RB (ID:440060616) /dev/tty.usbmodem0004400743561

b < EFR32xG21 2.4 GHz 20 dBm.RE
- Thunderboard EFR32BG22

16

