
Tech Talks LIVE Schedule – Presentation will begin shortly

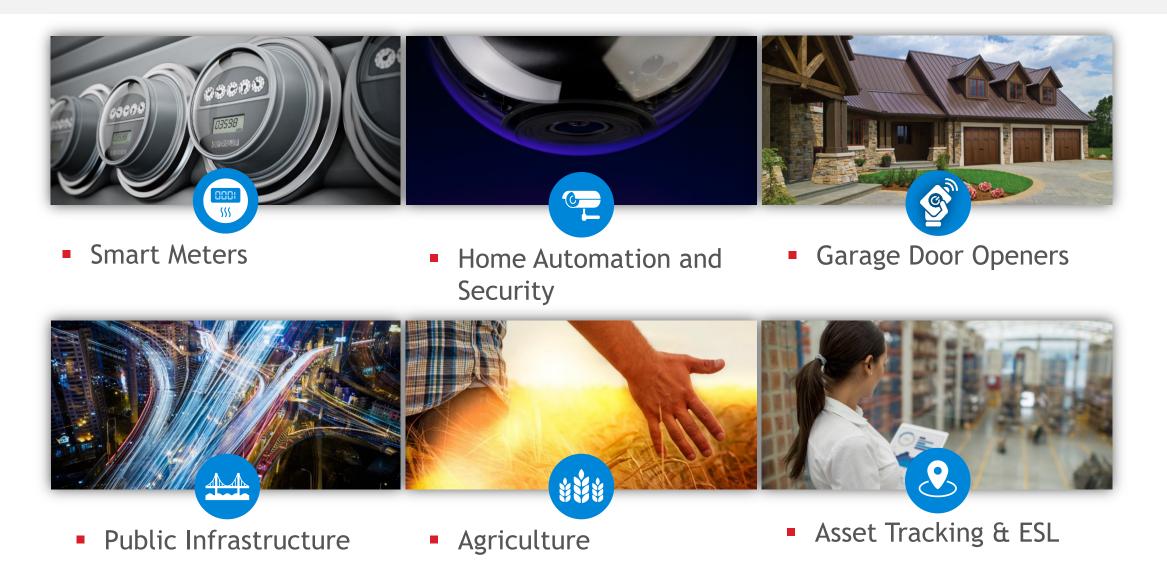
Silicon Labs LIVE: Wireless Connectivity Tech Talks

How to Measure and Debug Network Performance - Using Silicon Labs Network Analyzer	Thursday, May 7
RF Regulatory and Qualification Testing for Bluetooth, Zigbee & Z-Wave	Tuesday, May 12
Simplicity Studio Tips & Tricks: Our FAEs Know All The Tricks - Improve Your Life in Simplicity Studio	Thursday, May 14
Wireless Module vs Wireless SoC Tradeoffs and Decision Making Criteria	Tuesday, May 19
Thunderboard BG22 Unboxing. You Have Our Kit What Can You Do With It?	Thursday, May 21
Designing in Bluetooth using Bluetooth Xpress Modules with Minimal Code Writing	Tuesday, May 26
Overview of Silicon Labs Wi-Fi Solutions (Including Redpine Signals Wi-Fi Solutions)	Thursday, May 28

Please take the 3 question poll while waiting and be entered to receive a Flex Gecko Starter Kit.

Find Past Recorded Sessions at: https://www.silabs.com/support/training

WELCOME


Silicon Labs LIVE: Wireless Connectivity Tech Talks

SubGHz, Proprietary and Connect Software Stack

MAY 2020 | CHRIS LEAGUE

Proprietary Wireless Solutions

Why Consider Proprietary Solution?

USE CASE MISMATCH

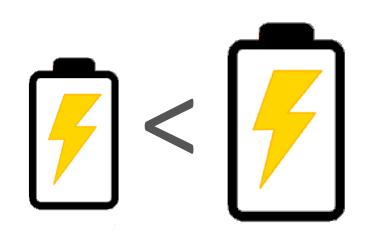
- If a Standard Protocol does not fit your Use Case. Bluetooth Mesh does not have enough throughput for sensors; THREAD take too long to rebuild its mesh after a power outage; Zigbee can not support enough end nodes.
- Your design has special requirements, like time flooding to synchronize end node measurements.

INNATE SECURITY

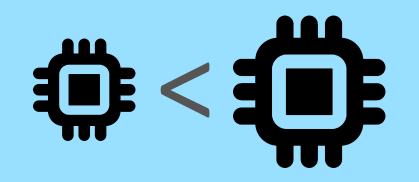
- Standard Protocols have known data rates, modulation, and package structure, making them more vulnerable.
- Proprietary network innately are more because of obfuscation of the above network parameters.

ฯHREAD

🛞 Blueto


abee

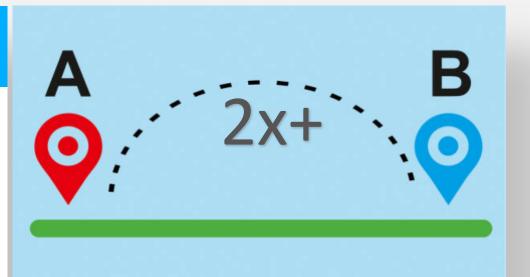
Why Consider Proprietary Solution


LOWER POWER

- Standard Protocols have requirements for battery-powered end node involvement.
- Being totally in control of your battery-powered end nodes can lead to much lower power.

LOWER COST

- To Serve more market, Standard protocol continue to grow in memory size.
- Specifically satisfying your own Use Case can reduce memory and processing requirements.



Why Consider SubGHz Solution?

LONGER RANGE

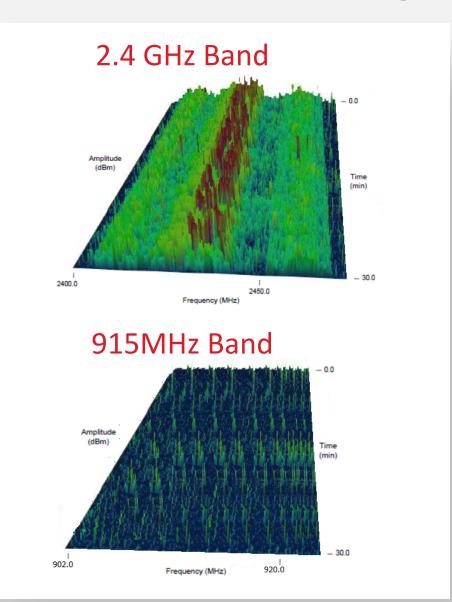
- Through Objects As radio waves pass through walls and other obstacles, the signal weakens. Attenuation rates increase at higher frequencies, therefore the 2.4GHz signal weakens faster than a sub-GHz signal.
- Around Objects- Even though radio waves travel in a straight line, they do bend when they hit a solid edge (like the corner of a building). As frequencies decrease the angle of diffraction increases, allowing sub-GHz signals to bend farther around an obstacle, reducing the blocking effect.
- LOS Even in line of sight, Sub GHz signals have superior propagation due to Path Loss:
 - 2.4GHz vs 915MHz => 8.5dB or 2.8x range
 - 2.4GHz vs 433MHz => 14.8dB or 5x range

$$Path \ Loss = \ 20 * \log_{10}\left(\frac{4\pi d}{\lambda}\right)$$

Where *d* is distance and

 λ is wave length.

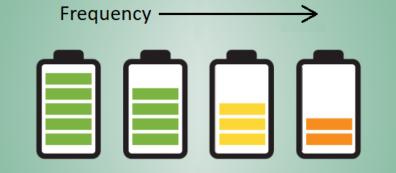
<u>Rule of Thumb</u>: Range doubles for every 6dB of link budget increase.


77 Silicon Labs Confidential

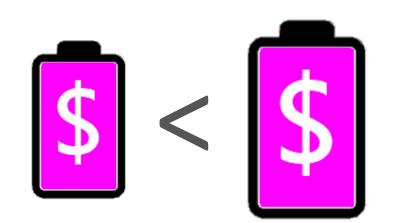
Why Consider SubGHz Solution?

LESS INTERFERENCE

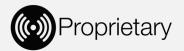
- The 2.4GHz airways are crowded with colliding 2.4GHz signals from various sources, such as Wi-Fi, Bluetooth-enabled phones and peripherals, ZigBee, and even microwave ovens and arc welders.
- Sub-GHz ISM bands are mostly used for proprietary low-duty-cycle links and are not as likely to interfere with each other. The quieter spectrum means easier transmissions and fewer retries, which is more efficient and saves battery power.



Why Consider SubGHz Solution?


LOWER POWER

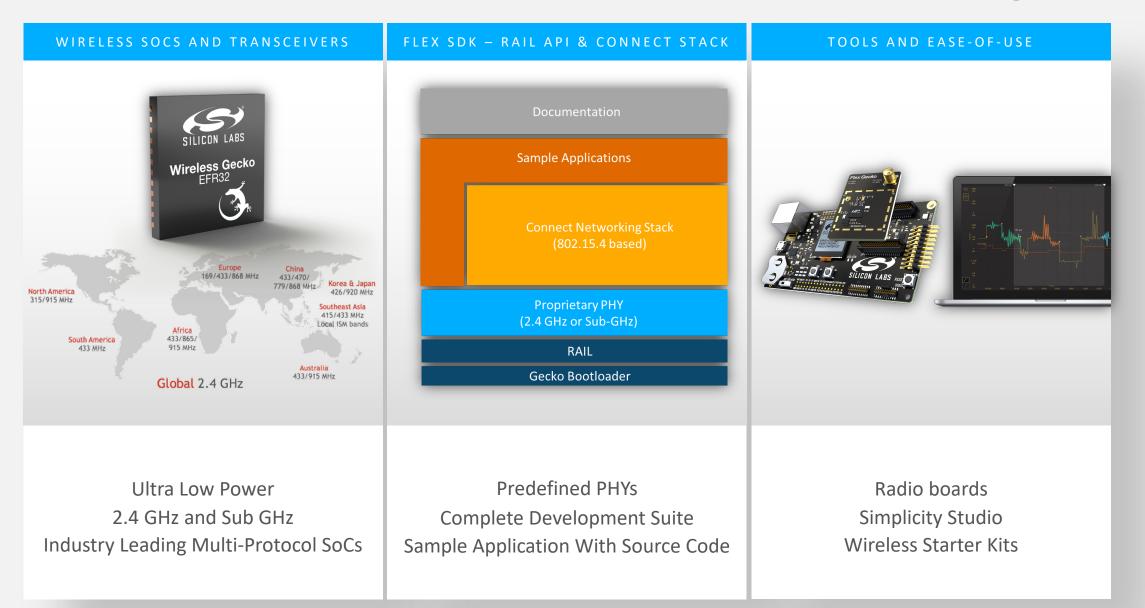
- SubGHz designs can transmit at lower power levels and achieve the same link budgets, saving battery life.
- Less interference means less retries, saving battery life.



LOWER COST

 When designing 20 years life devices, the long life chemistry battery (Lithium/Thionyl Chloride) will be the highest cost component of the design. Being able to take advantage of the energy savings of Proprietary SubGHz can be the difference between a D cell or C cell.

Why Silicon Labs for Proprietary SubGHz?



- Leadership
 - Leader in proprietary wireless
 - 12+ years of experience in proprietary wireless market
 - Trusted partnership with market leaders in metering, security, lighting, home and industrial automation
- Extensive portfolio comprising RF transceivers and Wireless SoC platform solutions
 - Excellent link budget up to 148 dBm for long range connectivity
 - Excellent performance in the presence of blockers
 - Industry leading integrated +20dBm PA
 - Full-featured radio configuration software and networking stacks
- Cutting-edge software and development tools
 - Comprehensive, easy-to-use tools and development environment
 - Radio Configurator, Packet Trace, Network Analyzer, AppBuilder, Energy Profiler

600+ Million proprietary wireless ICs shipped

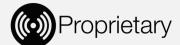
A Comprehensive Proprietary Portfolio

The Parts

WIRELESS SOCS AND TRANSCEIVERS		TOOLS AND EASE-OF-USE
North America 135/915 MHz Arica 433/865/ 15 MHz North America 433/MHz Arica 433/855/ 15 MHz South America 433/MHz Arica 433/855/ 15 MHz China 433/855/ 15 MHz Arica 433/855/ 15 MHz	Documentation Sample Applications	Files Cardo a
	Proprietary PHY (2.4 GHz or Sub-GHz)	
	RAIL Gecko Bootloader	
Ultra Low Power 2.4 GHz and Sub GHz Industry Leading Multi-Protocol SoCs	Predefined PHYs Complete Development Suite Sample Application With Source Code	Radio boards Simplicity Studio Wireless Starter Kits

Introducing Wireless Gecko...

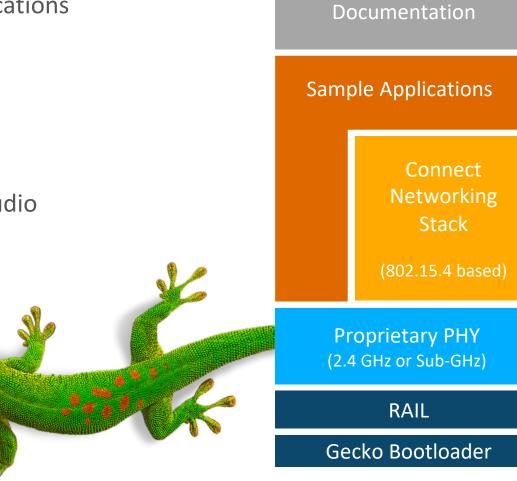
Multiband, Multiprotocol Wireless SoC for the IoT


- ARM[®] Cortex[®]-M4
- 2.4 GHz and sub-GHz
- Scalable Memory
 - Up to 1 MB Flash / 256 kB RAM
- Ultra low power
 - Down to 63 µA/MHz (active)
 - Down to 1.3 µA (sleep)
 - Integrated DC/DC converter
 - Autonomous peripherals
- High performance and integration
 - Up to +20 dBm PA
 - Down to -126dBm RX Sensitivity
 - 2.4 GHz balun
 - Advanced crypto block

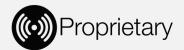
Flex Gecko SoC Comparison

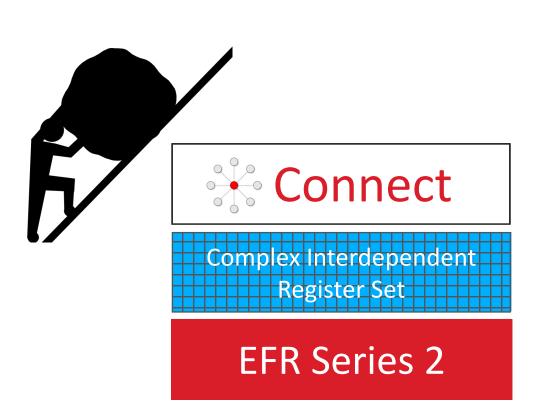
	EFR32FG1	FG12	FG13	FG14
Freq. Bands	2.4 GHz + Sub-GHz	\rightarrow	\rightarrow	\rightarrow
Modulations	2/4(G)FSK, OOK, ASK, OQPSK, DBPSK, DSSS, FEC	\rightarrow	\rightarrow	\rightarrow
Core	Cortex-M4 (40 MHz)	\rightarrow	\rightarrow	\rightarrow
Max Flash	256 kB	1 MB	512 kB	256 kB
Max RAM	32 kB	256 kB	64 kB	32 kB
Security	AES-128/256, ECC, SHA-1, SHA-2	AES-128/256, ECC, SHA-1, SHA-2, TRNG, Radio CRYPTO	AES-128/256, ECC, SHA-1, SHA-2, TRNG, Radio CRYPTO	AES-128/256, ECC, SHA-1, SHA-2, TRNG
Max TX Power	+20 dBm	\rightarrow	\rightarrow	\rightarrow
Max RX Sensitivity	-126 dBm	\rightarrow	\rightarrow	\rightarrow
Active Current	63 μA/MHz	70 μA/MHz	69 μA/MHz	67 μA/MHz
Sleep Current	2.5 μΑ	1.5 μΑ	1.3 μΑ	\rightarrow
2.4 GHz @ +0 dBm TX Current	8.2* mA	9.5 mA	8.5 mA	\rightarrow
2.4 GHz RX Current	9.8* mA	10.8 mA	10.2 mA	\rightarrow
868 MHz @ +14 dBm TX Current	34.5 mA	35.3 mA	\rightarrow	\rightarrow
868 MHz @ +20 dBm TX Current	84.9 mA	79.7 mA	\rightarrow	\rightarrow
868 MHz RX Current	8.1 mA	8.6 mA	9.6 mA	8.6 mA
Max GPIO	31	65	31	31
Other Features	IDAC	VDAC, LESENSE, OPAMP, Cap Sense	VDAC, LESENSE, OPAMP, Cap Sense	VDAC, LESENSE, OPAMP
Operating Voltage	+1.85 - 3.8 V	+1.8 – 3.8 V	\rightarrow	\rightarrow

The Software



WIRELESS SOCS AND TRANSCEIVERS	FLEX SDK – RAIL API & CONNECT STACK	TOOLS AND EASE-OF-USE
North America Hasse AsaMHz	Documentation Sample Applications Connect Networking Stack (802.15.4 based) Proprietary PHY (2.4 GHz or Sub-GHz) RAIL	
Global 2.4 GHz Ultra Low Power 2.4 GHz and Sub GHz Industry Leading Multi-Protocol SoCs	Gecko Bootloader Predefined PHYs Complete Development Suite Sample Application With Source Code	Radio boards Simplicity Studio Wireless Starter Kits




- Easy to use Radio Abstraction Interface Layer (RAIL) API
- Feature Rich and Scalable Connect Networking Stack
- Sample applications and extensive documentation
- Simplified Developer Experience through Simplicity Studio
 - Radio configurator
 - Application builder
 - Network analyzer
 - Energy profiler

RAIL – Radio Abstraction Interface Layer

- Creating a Proprietary Protocol from scratch or porting a legacy protocol is no small task and can be a timeintensive and complicated process.
- A Proprietary Protocol designer has to understand every aspect of the Radio:
 - PHY layer to Regulatory Requirements
 - Packet Structure and Parsing to Network timing
- Traditionally, this feat was made more complex by <u>thousands</u> of hardware registers that controlled complex interdependent radio characteristics.
- RAIL was created to abstracting away those complexities in to easier to use API.
- Silicon Labs uses this same consistence RAIL Abstraction Layer to implement all of our Standard Protocols, making Multiprotocol possible.
- All Silicon Labs Energy Friendly Radios have the same consistence RAIL API, making migration between different EFR devices and EFR Series seamless.

RAIL API: https://docs.silabs.com/rail/latest/

RAIL API

Data path	Management path				
ТХ	Radio Configuration	Auto ACK	BLE Specific	FIFO Management	
 Configuration Data Load Start TX Set TX Power 	 Radio Init Set Protocol Set Automatic TX/RX Transitions Packet/Frame configuration 	 Configuration Enable/Disable Pause/Resume/Cancel Load/Use ACK Buffer Status 	 Init/De-init BLE Set PHY Modes (1Mbps, 2Mbps, w/ Viterbi) Set channel RF parameters 	 Data Configuration Reset FIFO Enable/Disable RX FIFO Set/Get RX/TX FIFO Thresholds 	
Get TX Status	Channel configuration	• Status	802.15.4 Specific	Write TX FIFO	
• TX events	Bit Rate configuration Symbol Pate configuration	Address Filtering	• Init/De-init 802.15.4	 Read RX FIFO FIFO events 	
Pre-TX • Schedule TX • CCA-CSMA • CCA-LBT • Set CCA threshold	 Symbol Rate configuration PA tune configuration RF Sense configuration Load custom configuration RF Idle/Extended Idle Get Radio Entropy 	 Configuration Enable/Disable/Reset Filter Enable/Disable Address Set Filter Address IsEnabled 	 Set Short/Long Address Set PanId/Coordinator Set Promiscuous Mode Data request callback Radio Timings		
Set CCA threshold	Get Version		Set/Get time base		
RX	Radio Calibration	Radio Diagnostic	• Start/Stop timer		
ConfigurationStart/Schedule RX	Calibration InitCalibration Start	 BER Start/Stop/GetStatus Direct Mode Configuration 	Memory Manager Abstraction	1	
Get RSSIStart/Poll/Get Average RSSIRX events	Calibration StatusCalibration events	 Set/Get Tune Start/Stop Stream Start/Stop TX Tone 	 Allocate/Free Memory CBs Begin/End Write Memory events 		

Connect Networking Stack

Feature Rich Proprietary Wireless Networking Stack

- Highly Scalable
 - Up to 2K nodes in extended STAR mode, Up to 65K nodes in Direct Mode
- Small memory footprint (~75 KB Flash/~10 KB RAM)
- Low Power modes
- Dynamic Multi Protocol (DMP) with BLE
- Built In Security
- Faster Time To Market
 - Ready to use and customizable PHYs
 - Application builder, Network analyzer and Energy profiler
 - GCC and IAR compiler support
 - Sample Applications
- Field Upgradable via OTA
 - Over-the-Air Firmware Updates (unicast & multicast)

Sample Applications

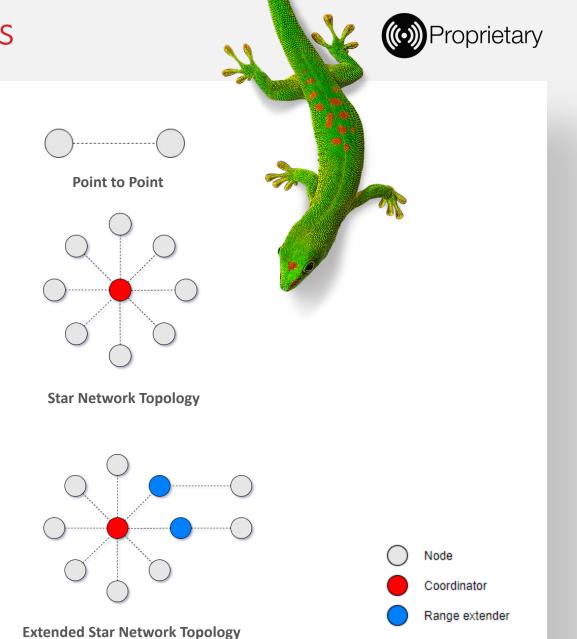
Connect Networking Stack (802.15.4 based) Security

Proprietary PHY (2.4 GHz or Sub-GHz)

Gecko Bootloader

Connect Networking Stack : Worldwide PHYs

PHY profile	Frequency	Modulation	Bitrate
2.4GHz 802.15.4	2.4 GHz	OQPSK	250 kbps
DSSS 915-100	915 MHz	OQPSK	100 kbps (0.8Mcps)
DSSS 915-250	915 MHz	OQPSK	250 kbps (2Mcps)
915-500	915 MHz	2GFSK	500 kbps
DSSS 915-500	915 MHz	OQPSK	500 kbps
China 490	490 MHz	2GFSK	10 kbps
Europe 169	169 MHz	2GFSK	4.8 kbps
Europe 868	863 MHz	2GFSK	100 kbps
Japan 915	920 MHz	2GFSK	100 kbps
Korea 424	424 MHz	2GFSK	4.8 kbps
Korea 447	447 MHz	2GFSK	4.8 kbps
Korea 915	917 MHz	2GFSK	4.8 kbps
US FCC 434	434 MHz	2GFSK	200 kbps
US FCC 902, Brazil 902	902 MHz	2GFSK	200 kbps


- Each RF configuration is tuned and tested by Silicon Labs for maximal performance
- Custom PHYs can be configured via Radio Configurator in Simplicity Studio

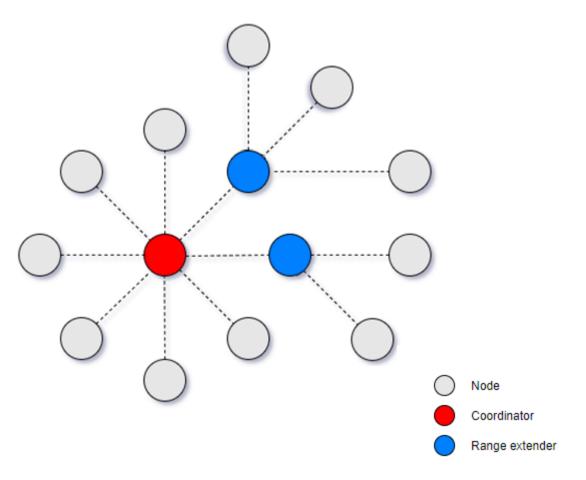
Connect Networking Stack - Topologies

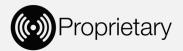
- Point to point
 - Simple communication between two devices

Star

- Single coordinator with multiple end devices
- All communication passes through the coordinator
- Up to 64 devices within radio range
- Extended star
 - Range extenders to extend the range of end-nodes
 - Up to 2048 devices

22

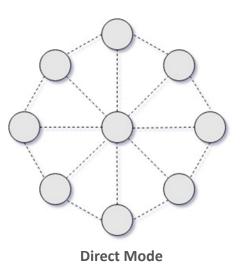

Connect Networking Stack – Devices Types


Coordinator

- Forms and manages the network One coordinator per network
- Typically Line Powered
- Up to 64 nodes per coordinator
- Range extender
 - Extends the range of the nodes
 - Joins the coordinator
 - Typically Line Powered
 - Up to 32 nodes per range extender

End Nodes

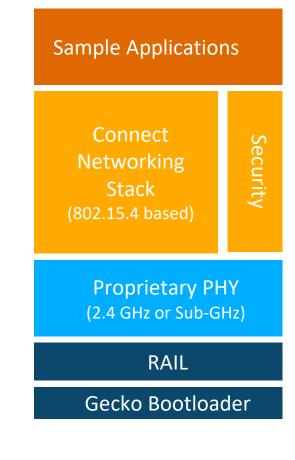
- Joins the coordinator or a range extender
- Typically Battery Powered
 - Can be configured as regular or sleepy nodes



Additional Connect Modes

- Direct Mode
 - No coordinator All nodes are equal
 - Nodes talk to each other directly
 - No default routing capabilities
 - Customers can implement their own routing at the App layer
 - Highly scalable
 - Up to 65K nodes (limited by 16 bit address space)
 - Supports OTA
 - No Sleepy Nodes
- MAC Mode
 - Fully 802.15.4 compliant
 - PHY and MAC layer only, no upper layer functionality
 - Customer can reuse/implement their own network and upper layer functions

Connect Networking Stack – Building Blocks


- Hardware Abstraction Layer (HAL) through EFR32 peripherals drivers
 - Common drivers for devices and their peripherals across the EFR32 platform

PHY

- PHY provided via RAIL with 802.15.4 acceleration
- Fully tested and ready to use PHYs, Customizable via Radio Configurator

Message builder/parser

- 802.15.4 like PHY/MAC packet format builder/parser (max 127 bytes PHY frame)
- Proprietary network layer format builder/parser
- Simulated EEPROM
 - Wear-leveled persistent storage of network and application data
- Event system
 - Allows the stack and the application to schedule code to run after certain events

Connect Stack - Additional Features

- Frequency hopping for regulatory compliance
- Serial and Over-the-air bootloaders (Broadcast and Unicast)
- Network Co-Processor (NCP) mode
- Memory manager with garbage collector
- CSMA-CA based MAC layer
- MAC security
- MAC queues for TX and RX
- Mailbox that allows server to buffer messages for client nodes typically sleepy nodes (default 25, max 254)
- Packet priorities

Sample Applications

Connect Networking Stack (802.15.4 based) Security

Proprietary PHY (2.4 GHz or Sub-GHz)

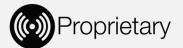
RAIL

Gecko Bootloader

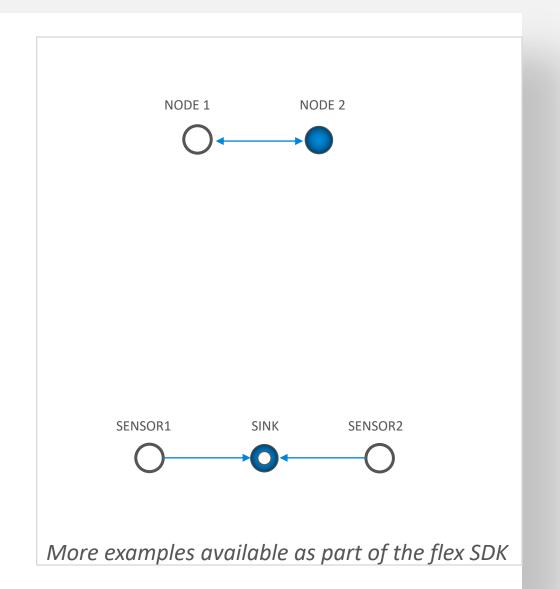
Connect Networking Stack - Security

802.15.4 Mode 5 MAC Layer Security

AES

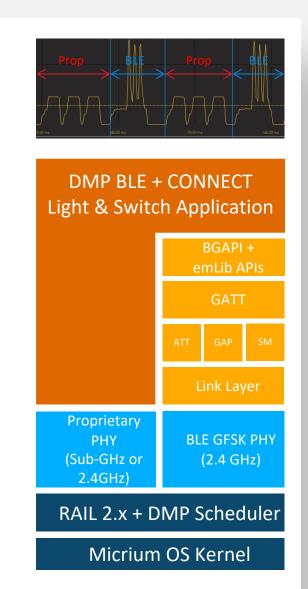

- All messages will be AES-128 encrypted and signed with a network wide pre-shared key provided to the device at commissioning
- Enables nodes to exchange secured messages based on standard encryption/authentication scheme
- Takes advantage of the AES hardware acceleration block available on EFR32

Mbed TLS


Application Security

Sample Application	าร
Connect Networking Stack (802.15.4 based)	Security
Proprietary PH (2.4 GHz or Sub-G	
RAIL	
Gecko Bootloa	der

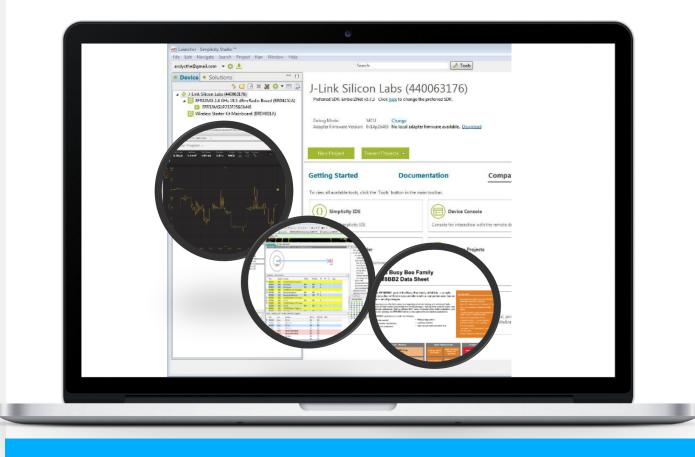
Example Projects


- Wire replacement
 - Bidirectional point-to-point network topology with two nodes
 - Master and Slave
 - Configurable Slave node
 - Regular slave (radio always on)
 - Sleepy slave (radio off most of the time)
- Commissioned Device
 - Single Hop Direct Network Topology
 - Any node can communicate to any other node directly
 - Network parameters are commissioned by the application
 - Node ID, PAN ID etc.
- Sensor/Sink
 - Star Network Topology
 - Sink node acts as network coordinator
 - Sensor nodes are joined to Sink and periodically report back
 - Sensor nodes can be regular or sleepy slave nodes

Dynamic Multiprotocol BLE + CONNECT

- Dynamic Multiprotocol BLE + CONNECT
 - Customer application can directly call CONNECT and BLE APIs
 - CONNECT and BLE APIs are thread safe
 - API to configure the priority of BLE and CONNECT TX / RX operations
 - By default CONNECT has lower priority
- Available today in Simplicity Studio
 - Dynamic Multiprotocol BLE + CONNECT Light and Switch example in Flex SDK
 - Wireless Gecko Mobile Application available for Android and iOS
 - Quick Start Guide (QSG) and User Guide (UG)
- For more information on DMP BLE + Connect:
 - Sub-GHz and Bluetooth Low Energy Multiprotocol Learning Center: <u>https://www.silabs.com/products/wireless/learning-center/multiprotocol/sub-ghz-ble</u>
 - Sub-GHz and Bluetooth Low Energy Multiprotocol Learning Center: <u>https://www.silabs.com/products/wireless/learning-center/multiprotocol/sub-ghz-ble</u>

The Tools



WIRELESS SOCS AND TRANSCEIVERS	FLEX SDK – RAIL API & CONNECT STACK	TOOLS AND EASE-OF-USE	
<image/> <complex-block> Nickerse Breisers Nickerse Breisers Nickerse Breisers Nickerse Breisers Nickerse Breisers Nickerse Breisers Austerse Brades Atterse Brades Atterse Atterse</complex-block>	Documentation Sample Applications	Flax Diodea	
	Connect Networking Stack (802.15.4 based)		
	Proprietary PHY (2.4 GHz or Sub-GHz)		
Ultra Low Power 2.4 GHz and Sub GHz Industry Leading Multi-Protocol SoCs	Predefined PHYs Complete Development Suite Sample Application With Source Code	Radio boards Simplicity Studio Wireless Starter Kits	

The Right Tool Set – Simplicity Studio™

Wireless and MCU design made simple

- Common development environment for MCU and Wireless products
- Eclipse-based IDE with wireless stack support
- Complete Documentation
- Demos / Software Examples
- Advanced Tools
 - AppBuilder
 - Radio Configurator
 - Energy Profiler
 - Network Analyzer

Single Tool for Development

Application Builder – RAIL and Connect Stack

	5			_		×		
ile Edit Filters Win	Select Application Select either a blank a	pplication or a san	nple application.				rork Ana	
**** *sensor-test.isc	Sample Application							ĵ
 Silicon Labs Comm General Application of Generation direction Select archite Board type (Bill Wireless MCU3) Device name: Device name: Device type: Phy options Selected Phy US/FCC 902 MH2 Japan 920 MH2 Korea 917.1 MH 	 Connect (SoC): Employed A dynamic multipro applications that run minimum plugins ar regarding plugins, c Connect (SoC): Cor This application der parameters are corr Connect (SoC): Der 	project structure, u pty Example - DM tocol minimal pro of Connect and BLE ad emberAfMainIn allbacks and event missioned Devic monstrates direct c missioned by the mo Connect Light dication demonstr	ipect structure, used a protocols simultane itCallback are enables, see UG235.04. e ommunication betw application.	eously. By default, o led. For customizatio veen nodes in range stion that can be turn	or custom nly the bare on options . The network ned on/off by		ec Preview	
✓ Information Description The sensor an and the sensor an and the sensor an device, while The "set-to-op require an ack secured and u The "set-tery" sets the securi The "leave" CI	🦑 Connect (SoC): MA	Dication demonstr is application is pa C Mode Device nonstrates standar sor nonstrates a star n	ating a switch appli irt of the Connect Li d 802.15.4 commun	ght/Switch demo se	tup. des in range.		 Ay d; ∵	
	?	< Back	Next >	Finish	Cancel			

- Application Builder is a complete GUI solution for configuration of a stack
 - Fully integrated into Simplicity Studio
- Enables setup and configuration of entire Connect stack for desired application

oprietary

- GUI-based configuration allows trade-off in code size / features
 - PHY modes (for worldwide regions)
 - Frequency hopping: On/off
 - Node type: Coordinator, Range Extender, End-node, Sleepy end-node
 - Association: Dynamic or fixed
 - OTA Bootloader: Enabled or disabled
 - Security: On/off
 - GPIO configuration
 - Debug mode: On/off
- Using AppBuilder for Proprietary Applications: <u>https://www.silabs.com/documents/public/training/wireless/using-app-builder-proprietary-applications.pdf</u>

Radio Configurator

🞄 General 📵 HAL 🙀 Radio Configuration 🔥 Printing 🗇 Plugins 🛱 Callbacks 🚴 Other					
✓ Operational Frequency					
Base Channel Frequency 902 MHz Channel Spacing 1000 kHz					
Injection side HIGH_SIDE ~					
> Crystal					
★ Modem					
Modulation Type OQPSK V Shaping Filter NONE V					
Bitrate 1000 kbps Shaping Filter Parameter (BT or R) 0.50					
Deviation 500 kHz FSK symbol map MAP0 V					
Baudrate Tolerance 0 Eppm Enable Asynchronous direct mode					
▼ Packet					
Frame General Frame Fixed Length Frame Variable Length Frame Type Length CRC Whitening					
Variable Frame Length Adjust 0 ਦ Variable Length Bit Endian LSB_FIRST V					
Variable Length Byte Endian LSB_FIRST v Length Includes CRC Bytes					
Maximum Length 0 🖨 bytes Minimum Length 0 🖨 bytes					
Variable Length Bit Size 0 🖨 bits Variable Length Bit Location 0 🖨					
Frame					
Preamble Syncword Payload CRC					
Preamble	_				
Preamble Base Pattern 1					
Preamble Length Total 40 🖨 bits					
Symbol Coding					

- Rapid Radio configuration and prototyping
 - Predefined PHY settings for most common world regions
 - Ability to create custom PHY settings for proprietary wireless applications
- Intuitive GUI to configure PHY parameters
 - Frequency bands, channel spacing, modulation
 - Bit rate, symbol maps, symbol coding, filtering
 - Timing detection, AFC, AGC and many other
- Quick learning curve for new radio engineers
 - Human readable configurations
 - No need to learn specific radio registers and other IC internal information

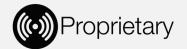
https://www.silabs.com/documents/public/application-notes/an971-efr32-radio-configurator-guide.pdf

Getting Started

1. Decided your target frequency and order a Flex Gecko Wireless Starter Kit

2. Install Simplicity Studio

https://www.silabs.com/products/development-tools/software/simplicity-studio


3. Follow the Quick Start Guide (QSG138):

"Getting Started with the Silicon Labs Flex SDK"

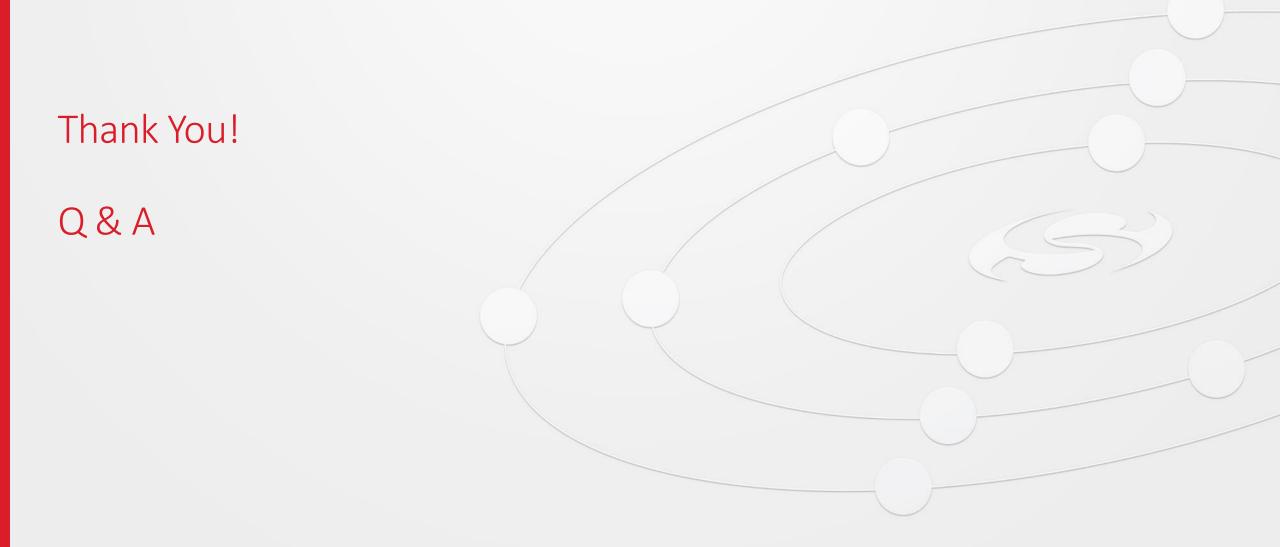
https://www.silabs.com/documents/public/quickstart-guides/qsg138-flex-efr32.pdf

- 4. Explore our online resources:
 - Getting Started with RAIL: <u>https://www.silabs.com/products/development-</u> <u>tools/software/radio-abstraction-interface-layer-sdk</u>
 - Getting Started with Connect: <u>https://www.silabs.com/products/development-</u> <u>tools/software/connect-networking-stack</u>

Useful Links on FLEX SDK

- RAIL API: <u>https://docs.silabs.com/rail/latest/</u>
- Connect API: <u>https://docs.silabs.com/connect-stack/latest/</u>
- Sub-GHz and Bluetooth Low Energy Multiprotocol Learning Center: <u>https://www.silabs.com/products/wireless/learning-center/multiprotocol/sub-ghz-ble</u>
- Getting Started with Sub-GHz and Bluetooth[®] Multiprotocol Development: <u>https://www.silabs.com/support/getting-started/multiprotocol/sub-ghz-ble</u>
- Getting Started with RAIL: <u>https://www.silabs.com/products/development-tools/software/radio-abstraction-interface-layer-sdk</u>
- Getting Started with Connect: <u>https://www.silabs.com/products/development-tools/software/connect-networking-stack</u>
- Using AppBuilder for Proprietary Applications: <u>https://www.silabs.com/documents/public/training/wireless/using-app-builder-proprietary-applications.pdf</u>
- QSG138 Quick start guide for the Flex SDK: <u>https://www.silabs.com/documents/public/quick-start-guides/qsg138-flex-efr32.pdf</u>
- AN971: EFR32 Radio Configurator Guide <u>https://www.silabs.com/documents/public/application-notes/an971-efr32-radio-configuratorguide.pdf</u>

BG22 Virtual Workshop

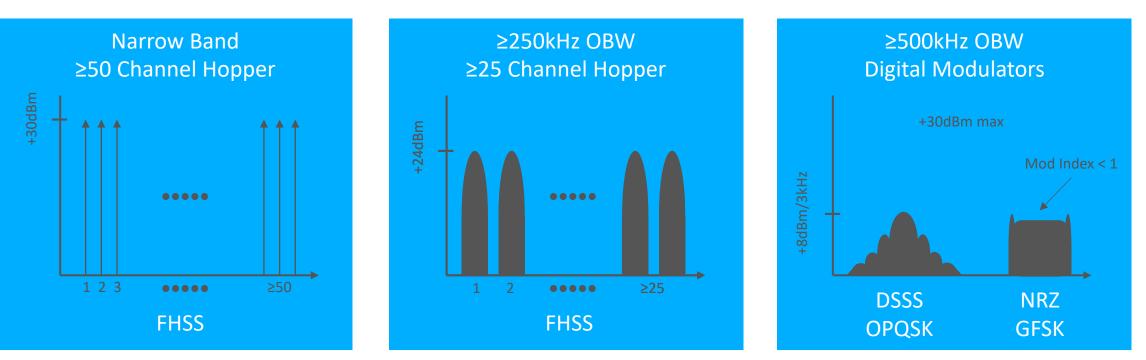

Learn how to develop and deploy more powerful, efficient, and secure IoT products with your own BG22 Thunderboard – free for all registrants!

Sessions had book up!

No worries, we are in the process of adding more.

So, check the link below for newly opening sessions and their dates:

Register today! <u>https://www.silabs.com/about-us/events/virtual-bluetooth-workshop</u>



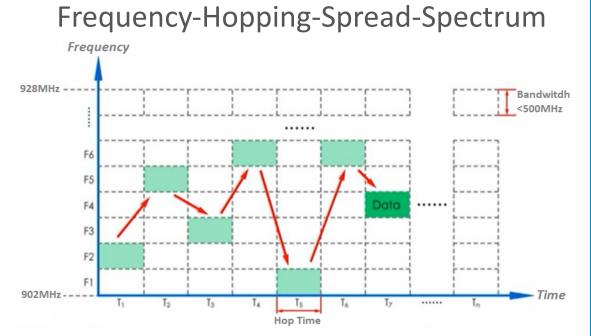
Ways to Communicate 900MHz Band

Communication in the 902-926MHz Band is governed by FCC Part15.247 in the US. Canada, Brazil, and Australia have similar rules for this exact band.

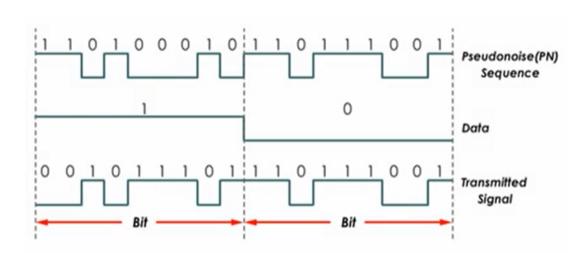
https://www.govinfo.gov/content/pkg/CFR-2013-title47-vol1/pdf/CFR-2013-title47-vol1-sec15-247.pdf



Max Link Budget 132dBm for DSSS Max Link Budget 127dBm for GFSK


Max Link Budget 156dBm

Max Link Budget 130dBm


FHSS vs DSSS

Both provide protection from interferers while spreading the spectrum to avoid inferring with others.

 FHSS hops the transmitting Data from channel to channel in a pseudorandom way that "wears" all of the channels equally over time. Direct-Sequence-Spread-Spectrum

 DSSS XORs a Psuedonoise Sequence (chips) with the Data to provide error correction or processing gain in the resulting transmitted signal.