Tech Talks LIVE Schedule – Presentation will begin shortly

Wireless Connectivity Tech Talks

3月31日,星期三	聚焦Silicon Labs的到达角(AoA)解决方案 Zoom in on Silicon Labs Angle of Arrival (AoA) Solution
4月30日,星期五	探索超低功耗 Wi-Fi 解决方案 RS9116W Discover the Ultra-low-power Wi-Fi Solution RS9116W
5月18日,星期二	使用蓝牙 Xpress 模块加速蓝牙开发 Speed up Bluetooth Development with Bluetooth Xpress Modules

Recording and slides will be posted to: www.silabs.com/training

We will begin in 3:00

WELCOME

聚焦Silicon Labs的到达角(AoA)解决方案 Zoom in on Silicon Labs AoA solution

梅汉忠 (Chung Mui), 中国华南区高级应用工程师

Silicon Labs Confidenti

Agenda

- Direction Finding: Angel-of-Arrival (AoA)
- Silicon Labs Enhanced AoA mode
- Overview of Silicon Labs AoA Solutions
- Hardware
 - Bluetooth SoC BG22
 - Antenna Array Reference Design
- Software
 - Bluetooth SDK
 - Real Time Location (RTL) Library
- Example apps and development kits
- Documentation
- **Q&A**

How Angle-of-Arrival (AoA) Works?

An asset wants to broadcast its location

- Continuous tone extension (CTE) is added to the end of a Bluetooth advertisement or connection packet
- Asset can support other Bluetooth functions while being tracked as CTE does not use the payload

A locator wants to find the asset

- A locator needs to have multiple antennas, as antenna is switched during the CTE reception
- A locator listens for CTE packets and measures IQ data from the CTE payload
- Can perform spherical azimuth and elevation calculation, or pass the IQ data forward to back-end processing

How AoA Works at a System Level?

Boosting AoA Scalability by Silicon Labs Enhanced mode

Bluetooth 5.1 Direction Finding

- Two modes to Tx/Rx CTE
 - Connection mode (based on connection)
 - Connectionless mode (based on periodic advertising)
- Both require RAM allocation on the locator to maintain the connections or synchronizations
- Limit the number of supported tags (typically <50)
- Also establishing connections or periodic advertizing syncs can be time consuming for large number of assets
- Silicon Labs Enhanced mode
 - Silicon Labs proprietary
 - CTE transmission in the BT 5.0 extended ADV packets
 - Little RAM is needed in the locator and no time syncing is needed
 - CTE still tranmitted on 37 data channels maximizing spectrum usage
 - Tag implementation is very simple and low power
 - Up to 1000 tags

locator

BT 5.1: Connectionless mode (periodic advertising)

BT 5.1: Connection mode

AUX ADV IND

AUX ADV IND

AUX ADV IND

tag

Silicon Labs' Solutions for Implementing AoA

TAGS		LOCATORS		POSITIONING ENGINE	
Hardware	Bluetooth SoC: BG22	Hardware	 Bluetooth SoC: BG22 4x4 antenna array ref. design 	Hardware	 Not supplied by Silicon Labs (e.g. PC, Cortex-A, etc)
Software	Bluetooth SDK v3.1 or aboveDemo and example code	Software	Bluetooth SDK v3.1 or aboveDemo and example code	Software	 Real Time Location (RTL) Library (on Windows and Linux) Demo and example code
Development kit	• Thunderboard BG22	Development kit	 4x4 antenna Array Radio Board SWTK mainboard 	Development kit	Not supplied by Silicon Labs

Hardware – BG22: Optimized Battery Powered Bluetooth LE SoC

Optimized

SILICON LABS

Detailed info

Applications

Consumers Smart Home Portable healthcare devices Asset tracking tags BT mesh low-power nodes

Protocol Support

Bluetooth 5.2 1M, 2M and LE Coded PHYs Direction Finding (AoA & AoD) BT mesh Low Power Node (512 kB parts only) Proprietary

Wide Operation Range 1.71 V to 3.8 V -40 °C to 125 °C

Secure Bluetooth 5.2 SoCs for High-Volume Products

Radio

Tx: -27 to +6 dBm Rx: -106.7 dBm @ 125 kbps GFSK -98.9 dBm @ 1 Mbit/s GFSK -96.2 dBm @ 2 Mbit/s GFSK

Ultra-Low Power

3.4 mA @ 0dBm Tx (radio only)
2.5 mA RX (radio only)
4.1 mA @ 0dBm Tx (radio + MCU)
3.6 mA RX current (radio + MCU)
1.4 μA EM2 with 32 kB RAM
0.5 μA w/ RTC in EM4
25 μA/MHz in active mode (EM0)

Compact Size

5x5x0.85mm QFN40 (26 GPIO) 4x4x0.85mm QFN32 (18 GPIO) 4x4x0.3mm TQFN32 (18 GPIO)

ARM Cortex-M33 with TrustZone

38.4/76.8 MHz 352/512 kB of flash 32kB RAM

Peripherals Fit for Purpose

2x USART, 2x I2C, 2x PDM and GPIO ADC (16 channels) Built-in temperature sensor with +/- 1.5 °C Built-in 32 kHz, 500ppm sleep clock

Security

AES128/256,SHA-1, SHA-2 (256-bit) ECC (up to 256-bit), ECDSA and ECDH True Random Number Generator (TRNG) Secure boot with RTSL Secure debug with lock/unlock

Hardware – 4x4 Antenna Array Reference Design

Components

- 16 (4x4) patch antennas (4 GPIOs)
- 1 BG22 SoC
- 5 (1+4) SP4T RF antenna switches
- 16 matching circuits

Firmware features

- Automatically switch by stack
- Up to 64 antennas with 6 GPIOs
- Configurable switching sequence

Documentations

- Schematic, PCB, BoM, ...etc
- Design Guidelines
- Measurement results
 - Refer to AN1195 (link)
- Development board
 - Order code: SLWBRD4185A

6.2 Environment 2 (1 locator, 1 tag, locator on turntable)

- · Location: Indoor, open space, plenty of objects in the measurement area
- Locator height from floor: 0.5 m
- Tag height from floor: 2.4 m
- Testing range: 27 m²
- Tag position is fixed
- · Locator in the middle of a turntable
- · Locator is rotated with the turntable
- Average azimuth error: +/- 3°
- Average elevation error at 3.5 m away from the locator: +/- 7°

Software – Bluetooth SDK (1/2)

Bluetooth SDK v3.1

- Bluetooth 5.2 stack
- Supports AoA

AoA Tag

SoC mode (no external host MCU)

AoA asset tag

- Connection, Connectionless, Silicon Labs Enhanced mode
- Example projects
- Proprietary Asseting Tracking Profile (ATP)
 - CTE (GATT) Services (e.g. change of CTE parameters)

Software – Bluetooth SDK (2/2)

- AoA Locators
 - BG22 and external host MCU

• BG22

- NCP mode (so-called slave mode)
- Bluetooth stack
- Antenna array switching
- Output IQ sample data
- Example
 - NCP AoA locator (locator target app)

External host MCU

- Application
- Control BG22
- IQ samples \rightarrow angles
- Angles \rightarrow x,y,z
- Example
 - locator host example app

Single locator RTL lib) engine IQ sample Cortex-A or x64 BLE event handler <conn type> BGAPI (VCOM/TCP) EFR32 Locator target app BGAPI SILICON LABS BLE stack **BG22** RAIL API RAIL

AoA Locator

Software – Real Time Location (RTL) Library

Figure 3-1: Silicon Labs RTL Library Providing Azimuth and Elevation

Figure 3-2: Silicon Labs RTL Library Providing X, Y and Z

Overview of RTL library

- Direction Finding (IQ samples → angles)
- Location Finding (angles \rightarrow x,y,z)
- Utility Functions

RTL library converts I/Q data to position

- Takes I/Q data as input from BG22
- Detects and filters out multipath
- Detects and filters out collisions (I/Q quality)
- Output azimuth & elevation or X, Y and Z
- Angle and elevation filtering algorithms for different use cases (high accuracy, real time etc.)
- Features
 - Supported platforms:
 - Windows, Ubuntu, Raspberry Pi (Cortex A), Darwin
 - Number of locators: 100
 - Silicon Labs' 4x4 antenna array ref. design
 - IQ Sample Quality Analysis tool
 - Example code

Example apps and development kits

2.1 Hardware Components

The demo consists of three hardware components:

- A Thunderboard BG22 that acts like an Asset Tag to be located
- A WSTK with a 4x4 Antenna Array board (BRD4185A) that acts like a Locator device
- A host PC, that controls the Locator, runs the calculations and displays the angle estimations

Documentation

- UG103.18: Bluetooth[®] Direction Finding Fundamentals (link)
- QSG175: Silicon Labs Direction Finding Solution Quick-Start Guide (link)
 - Architecture, Supported features, RTL library, Demos, and Examples
- AN1296: Application Development with Silicon Labs' RTL Library (link)
- AN1297: Custom Direction-Finding Solutions using Silicon Labs' Bluetooth Stack. (link)
- Additional development information
 - Bluetooth SDK v3.1 API (link)
 - RTL API (link)
- AN1195: Antenna Array Design Guidelines for Direction Finding (link)
- Online training (link)
 - AoA Direction Finding in Bluetooth SDK
 - AoA Direction Finding Lab

Q&A

Silicon Labs Confidenti

THANK YOU

Recording and slides will be posted to: <u>www.silabs.com/training</u>

Silicon Labs Confident