-’

SILICON LABS

UG435.06: Bootloading and OTA with

Silicon Labs Connect v3.x

This chapter of the Connect v3.x User’s Guide explains the boot-
loader options (standalone, application, and Over the Air (OTA))
available for use within Connect-based applications. The Connect
stack is delivered as part of the Silicon Labs Proprietary Flex SDK
v3.0 and higher. The Connect v3.x User's Guide assumes that
you have already installed the Simplicity Studio development envi
ronment and the Flex SDK, and that you are familiar with the ba-
sics of configuring, compiling, and flashing Connect-based appli-
cations. Refer to UG435.01: Developing Code with Silicon Labs
Connect v3.x for an overview of the chapters in the Connect v3.x
User's Guide.

The Connect v3.x User's Guide is a series of documents that provides in-depth informa-
tion for developers who are using the Silicon Labs Connect Stack for their application
development. If you are new to Connect and the Flex SDK, see QSG138: Getting Star-
ted with the Silicon Labs Flex Software Development Kit for the Wireless Gecko
(EFR32™) Portfolio.

Proprietary is supported on all EFR32FG devices. For others, check the device's data
sheet under Ordering Information > Protocol Stack to see if Proprietary is supported. In
Proprietary SDK version 2.7.n, Connect is not supported on EFR32xG22.

silabs.com | Building a more connected world.

KEY POINTS

* Introduces different bootloaders.
+ Describes using the Gecko Bootloader.

» Describes how to set up a Silicon Labs
Connect application for bootloading.

» Describes how to use the standalone
bootloader with an SOC or NCP Host
application.

» Describes how to use the application
bootloader for OTA.

UG435.06: Bootloading and OTA with Silicon Labs Connect v3.x
Introduction

1. Introduction

It is often required to update firmware on devices when it is not feasible to connect a J-Link debugger. In these cases, a standalone
bootloader is ideal because it makes it possible to update the firmware through a Universal Asynchronous Receiver/Transmitter (UART)
or Serial Peripheral Interface (SPI) connection.

In some cases, even connecting a device to a computer is problematic. In these instances, an OTA (Over the Air) bootloading process
can work. This requires an application bootloader which can update the firmware from an onboard storage (like an SPI flash memory or
part of the MCU flash memory). However, the OTA image transfer is still the responsibility of the main application.

For more details on bootloading basics, see UG103.06: Bootloading Fundamentals.

silabs.com | Building a more connected world. Rev. 0.1 | 2

UG435.06: Bootloading and OTA with Silicon Labs Connect v3.x
The Gecko Bootloader

2. The Gecko Bootloader

Silicon Labs Connect only supports the Gecko Bootloader which is available for the Wireless Gecko (EFR32™) portfolio. For the stand-
alone bootloader, the UART XMODEM Bootloader example is recommended. For the application bootloader, either the SP/ Flash Stor-
age Bootloader (if SPI flash is attached the EFR32) or the Infernal Storage Bootloader applications are recommended. Note that the
OTA protocol available for Silicon Labs Connect only supports single image bootloaders.

Once you have compiled the bootloader, make sure to flash it (the <pr oj ect nanme\ >- conbi ned. s37 file) on your device before flashing
the main firmware.

For more details on using the Gecko Bootloader examples, see AN1085: Using the Gecko Bootloader with Silicon Labs Connect. For
more information on the Gecko Bootloader, see UG266: Silicon Labs Gecko Bootloader User’s Guide.

silabs.com | Building a more connected world. Rev.0.1 | 3

UG435.06: Bootloading and OTA with Silicon Labs Connect v3.x
Setting Up a Silicon Labs Connect Application for Bootloading

3. Setting Up a Silicon Labs Connect Application for Bootloading

Creating a new Connect example and installing the Bootloader Application Interface component will:
* Modify the memory allocation on EFR32xG1 (where the first 16kB of the flash memory is used by the bootloader).
» Add a compile time define that can be used by bootloader-related code.

» Add c functions that can be used to communicate with the bootloader from the main firmware (for example, to switch to bootloader
mode).

Some specific application features like OTA needs some other components as well. These requirements will be discussed in the follow-
ing chapters.

silabs.com | Building a more connected world. Rev.0.1 | 4

UG435.06: Bootloading and OTA with Silicon Labs Connect v3.x
Using the Standalone Bootloader with a System on Chip Application

4. Using the Standalone Bootloader with a System on Chip Application

The standalone bootloader can be used without further modification in the application code. If you enable the GPIO activation feature in
the Gecko Bootloader (enabled by default), you can enter bootloader mode by resetting the MCU while pushing the activation button.
Then, you can communicate with the bootloader as described in AN1085: Using the Gecko Bootloader with Silicon Labs Connect.

Alternatively, you can enter bootloader mode by using the following function in your application:
hal LaunchSt andal oneBoot | oader (STANDALONE_BOOTLOADER NORMAL _ MODE)
For further details on the communication API with the bootloader, see the file

pl at f orm base/ hal / mi cr o/ boot | oader -i nt er f ace- st andal one. h

silabs.com | Building a more connected world. Rev.0.1 | 5

UG435.06: Bootloading and OTA with Silicon Labs Connect v3.x
Using the Application Bootloader for OTA

5. Using the Application Bootloader for OTA

5.1 Broadcast or Unicast

Silicon Labs Connect provides two OTA methods:

» Broadcast: Image is sent to all devices (although a device could ignore it, so in that sense, it is actually multicast). Only single-hop
range is supported—that is, the coordinator cannot bootload endpoints behind range extender.

» Unicast: Image is sent to a single device. If the server and client are in the same Connect network, it will work. Packets are ACKed
(both per-hop and end-to-end). The drawback is that it can only target a single device. Therefore, bootloading multiple targets is
slow and puts a serious load on the network.

Both broadcast and unicast use a single source to distribute the image. This is called the OTA server. The devices that download the
image are called OTA clients. Both broadcast and unicast supports secure messages.

Neither OTA method is available currently for MAC mode. Sleepy end devices cannot be bootloaded using the broadcast method. Al-
though unicast bootloading of a sleepy end device is theoretically possible, it would take an extremely long time and Silicon Labs does
not recommend it.

5.2 OTA Components
The following components are required to test OTA in an SoC application.

For both broadcast and unicast OTA:

» OTA Bootloader Interface: enables the application to communicate with the bootloader (for example, the flash memory is written us-
ing bootloader APIs).

* OTA Bootloader Test Common: implements generic bootloader CLI commands such as erase.

For broadcast OTA:
» OTA Broadcast Bootloader Client: implements OTA image reception.
» OTA Broadcast Bootloader Server: implements OTA image transmission.

» OTA Broadcast Bootloader Test: Implements CLI over the bootloader client/server and connects the OTA plugins with the OTA
Bootloader Interface.

For unicast OTA:
» OTA Unicast Bootloader Client: implements OTA image reception.
» OTA Unicast Bootloader Server: implements OTA image transmission.

» OTA Unicast Bootloader Test: Implements CLI over the bootloader client/server and connects the OTA components with the OTA
Bootloader Interface.

All components are open source.

5.3 Theory of Operation: Broadcast OTA

The broadcast OTA completes these steps:
1. Clients who want to download the same image set up the same tag.

2.The server starts broadcasting tagged image segments (a chunk of the firmware that fits into a connect data frame with memory
address).

3. The clients store the broadcasted image segments. Based on the addresses, they also recognize missing segments.

4.The server stops the broadcast after 512 segments and asks each client (with unicast message) what segments are missing.
5. The clients report the missing segments and the server collects this information.

6. The server re-broadcasts the missing segments.

7. The server asks again for missing segments and this loop continues until all the clients have the first 512 segments.

8. The server broadcasts the next 512 segments and this loop continues until all the clients have the full image.

The tags can be used in a network where not all devices run the same firmware, or it can be used for versioning to make sure a device
will not participate in the OTA process if it already has the same image.

silabs.com | Building a more connected world. Rev.0.1 | 6

UG435.06: Bootloading and OTA with Silicon Labs Connect v3.x
Using the Application Bootloader for OTA

5.4 Theory of Operation: Unicast OTA

Unicast OTA is much simpler. It completes these steps:
1. The clients set up a tag.
2.The server sends a handshake, telling the client the image size and the tag.
3. The client responds to the handshake.
4. The server sends a tagged image segment (a chunk of the firmware that fits into a connect data frame with memory address).
5. The client responds with a segment response.
6. If the server did not receive a response, it sends the segment again.
7.1f the server did receive the response, it sends the next segment, and continues this loop until the client has the whole image.

The tag is still available. It can be used for versioning. The server retries to transmit the unacknowledged segment multiple times before
it stops the transmission. The client has a five second timeout before it drops the current firmware download. A resume function has
been implemented in Flex 2.6. The client counts how many segments were received. If the connection was lost between the server and
the client, once the server re-initiates the download, the client informs the server during the handshake to send only the remaining por-
tion. The segment counter on the client side is cleared if the tag changed or a flash erase command has been executed by the client. If
the communication was interrupted, the re-initiation of the download is the responsibility of the customer’s application on the server
side.

5.5 Remote Bootload Request

Both broadcast and unicast OTA components implement command messages which makes remote bootload requests possible—that
is, the OTA server can request bootload from clients, and in response, the clients will load the downloaded image into the main memory
and boot into that.

silabs.com | Building a more connected world. Rev.0.1 | 7

UG435.06: Bootloading and OTA with Silicon Labs Connect v3.x
Example: OTA Bootloading in a Sensor-Sink Demo

6. Example: OTA Bootloading in a Sensor-Sink Demo

The following example walks through using OTA in a sensor-sink demo using CLI commands. The sink will be the OTA server and the
sensor(s) will be the OTA client(s). The example will use sensor/sink if the context is the Connect network and OTA client/server if the
context is the OTA process.

The example works with any Software Development Kit that is supported by Silicon Labs Connect, but the internal flash bootloader
example is only available for 1IMB (EFR32xG12) and 512kB (EFR32xG13) devices.

6.1 Create Projects

1. Create either of the single image bootloader examples that are available for your devices. There is no need to modify it.

2. Create a connect sink application. In addition to the Bootloader Application Interface component, you only need to install the follow-
ing components:

* OTA Bootloader Interface

* OTA Bootloader Test Common

» OTA Broadcast or Unicast Bootloader Server
» OTA Broadcast or Unicast Bootloader Test

This will be the OTA server project.

3. Create two sensor applications. The example will flash one with regular J-Link and use OTA to bootload the other. Make sure you
make some difference between the two applications to distinguish between them (for example, modify the application's initialization
code to print out different messages on the UART or turn on different LED). Similar to step 2, in addition to the Bootloader Applica-
tion Interface component, install these components in both projects:

* OTA Bootloader Interface

» OTA Bootloader Test Common

» OTA Broadcast or Unicast Bootloader Client
» OTA Broadcast or Unicast Bootloader Test

These will be the OTA client projects.
4. Generate and build all four projects (bootloader, sink, two sensors).

Note: If you have only one sensor project you can save time by generating the GBL file from the unmodified application, then modi-
fying and rebuilding it. Alternatively, you can use any other application to generate the GBL file. In this case, you cannot be certain
that the application will enable OTA image distribution next time.

Note: The Connect stack uses non-volatile data storage to store various pieces of information (more generally called tokens) that
the Connect stack needs to be persistent between device power cycles. These tokens support automatic network rebuilding on
startup. This system can be also used by the application to store persistent data.

Note: You can find more about the GBL file format and on how to generate the GBL file in UG266: Silicon Labs Gecko Bootloader
User's Guide.

6.2 Flashing Applications

For the applications to work, you first need to flash the bootloader itself. The simplest way to flash it is to use Simplicity Commander.
Make sure you use the <boot | oader app name>- conbi ned. s37 file because this is the only image with the full bootloader: Gecko
Bootloader is a two-stage bootloader, which means there is a very small first stage which can update the bootloader itself (this is not
demonstrated in this example). Only the -conbi ned. s37 file includes this first stage. All other binaries are just the second stage so they
will not work by themselves. For more information, see in UG266: Silicon Labs Gecko Bootloader User's Guide.

Next, flash the sink and one of the sensor applications. You can use almost any method, just make sure you don't use the "bi n file
because it does not include address information and might overwrite the bootloader. Also, make sure you do not erase the flash mem-
ory before flashing the application.

If both the bootloader and the application are present, it should start as a usual Connect project with the available Command Line Inter-
face (CLI).

silabs.com | Building a more connected world. Rev.0.1 | 8

UG435.06: Bootloading and OTA with Silicon Labs Connect v3.x
Example: OTA Bootloading in a Sensor-Sink Demo

6.3 Generating the GBL File

Once you have the application's binaries, you need to generate the GBL file from them. Find the connect _creat e_gbl _i mage. bat or
connect _creat e_gbl _i mage. sh file in the project directory depending on whether you are using Windows or UNIX. Run the file from a
terminal. The GBL files will be placed in the build folder where the binaries are located.

You need to permanently define the PATH_SCMD environmental variable as a path to the Simplicity Commander root folder. With Win-
dows, execute the following command to register this environmental variable:

setx PATH SCVMD C:\ SiliconLabs\ Si nplicityStudio\v5\devel oper\ adapt er _packs\ conmander

6.4 Loading the Image to the OTA Server

Next, you need to flash the GBL file of the other sensor to the bootloader's storage slot on the sink/OTA server as shown in the follow-

ing figure.
SensnrMETA client Sink/OTA server SensnrM?TA client
empty slot
F

USB/Simplicity Commander

Computer

The easiest way to do this is by using the Simplicity Commander commands described in the following subsections.

6.4.1 Loading to SPI Flash

To load <application image>.gbl to the SPI flash, use the following command:

commander extflash wite <application imge>. gbl

This method is only available on Silicon Labs Development Kits. It will lock the MCU and reset the device when it is finished.

silabs.com | Building a more connected world. Rev.0.1 | 9

UG435.06: Bootloading and OTA with Silicon Labs Connect v3.x
Example: OTA Bootloading in a Sensor-Sink Demo

6.4.2 Loading Internal Flash

To flash to internal storage, first figure out the starting address of the slot. You can read that from the storage tab in the AppBuilder of
the bootloader project. For example, for 1MB devices, it is 540672 by default as shown in the following figure.

we General |=I= Plugins |=l= Storage 5 Callbacks | Other

Bootloader Storage Slot Setup

Select the configuration for the bootloader storage slots,
Marme Start address Size (bytes)
Slat 0 540672 499712

Simplicity Commander will recognize the GBL file and you do not want to decode the address information from there (as it would flash it
to address 0): Basically, you want it to handle as a binary blob. If you rename the GBL file to .bin, you get exactly that. After that, you
can flash it either from the GUI (with start address) or from the command line by executing the following command:

comander flash --address 84000 <application inage>. bin

Where 84000 is 540642 in hexadecimal and <application i mage>. bi n is the renamed GBL file.

For more information, see UG162: Simplicity Commander Reference Guide.

6.4.3 Preparing the Devices for Bootloading

The next steps are CLI commands on the devices.

6.4.3.1 Preparing the Storage
Use these commands to prepare the storage on each device.

Commands on the OTA server:

boot | oader _ini t
boot | oader _val i dat e_i nage

The second command will check the image, which should look like this (with many more dots):

Verifying image............ done!
Image is valid!

Commands on the OTA client:

boot | oader _i ni t
boot | oader _fl ash_erase

The second command will erase the flash, which is required before writing it. Its output should look like this (with many more dots):

flash erase started
flash erasing slot O started.........
flash erase successful!

silabs.com | Building a more connected world. Rev. 0.1 | 10

UG435.06: Bootloading and OTA with Silicon Labs Connect v3.x
Example: OTA Bootloading in a Sensor-Sink Demo

6.4.3.2 Preparing the Network
These commands are the usual ones to create and join to a network.

Commands on the sink:

formO
pj oin 120

The first command starts the network and the second command permits the sensor nodes to join to the network for 120 seconds.
Commands on the sensor:

join O

It is a good idea to set a slower report rate to make the CLI more usable:

set _report_peri od 10000

Once the connection is established between the sensor and sink nodes, you should see the communication between the sink and the
sensor every 10 seconds.

You also need to set a bootloader tag on the sensor:
boot | oader _set _tag Oxaa

You will need the node ID of the sensor for the next steps. You can obtain the main attributes of the current state of the node by execut-
ing the i nf o command:

Node id: 0x0001

The next steps are different for unicast and broadcast OTA.

silabs.com | Building a more connected world. Rev. 0.1 | 11

UG435.06: Bootloading and OTA with Silicon Labs Connect v3.x
Example: OTA Bootloading in a Sensor-Sink Demo

6.4.4 Unicast OTA

Use the following command on the OTA server.

boot | oader _uni cast _set _target 0x0001

This will set the destination of the OTA packets to the sensor, which has the node ID (0x0001) identified in the previous step.

With the next command you start the OTA distribution itself as shown in the following figure.

SensorA/OTA client Sink/OTA server SensorA/OTA client

2 1

OTA

boot | oader _uni cast _di stri bute <size> Oxaa

Where <si ze> is the size of the GBL image in bytes and 0xaa is the tag you set up previously on the OTA client.

This starts the OTA image distribution process. You should see get segment lines on the OTA server (that is, reading segments from
flash memory) and i nconi ng segnent lines on the OTA client. It should end with i mage distribution conpleted, 0x00 on the
server side and | rage downl oad COVPLETED t ag=0xAA si ze=\ <si ze\ > on the client side.

At this point, boot | oader _val i dat e_i nage should return with val i d on the client as well.

Next, you are going to request bootloading as shown in the following figure.

SensorA/OTA client Sink/OTA server SensorA/OTA client

2 1

Gecko Bpotloader

To do that, execute the following command on the OTA server:

boot | oader _uni cast _request _boot| oad 1000 Oxaa

Where 1000 is a timeout in ms and Oxaa is the tag again.

silabs.com | Building a more connected world. Rev. 0.1 | 12

UG435.06: Bootloading and OTA with Silicon Labs Connect v3.x
Example: OTA Bootloading in a Sensor-Sink Demo

6.4.4.1 Unicast Download Resume Feature

Starting with Flex SDK version 2.6 the OTA download feature supports resuming the download from the segment at which the transmis-
sion was interrupted. To test this feature, reset the OTA server during download (by hardware reset pin or issuing the reset command
in the CLI. When the reset cycle has completed, issue the same commands on the server as were issued on the first attempt:

boot | oader _i ni t
boot | oader _uni cast _set _target 0x0001
boot | oader _uni cast _di stribute <size> Oxaa

The download should start from the point where it was interrupted. There is no limit to the number of times the interrupt and resume can
be repeated. If the tag has been changed or the flash has been erased on the OTA client, the download will start from the beginning
(that is, the whole image will be downloaded).

silabs.com | Building a more connected world. Rev. 0.1 | 13

UG435.06: Bootloading and OTA with Silicon Labs Connect v3.x
Example: OTA Bootloading in a Sensor-Sink Demo

6.4.5 Broadcast OTA

First, you set up the target list on the OTA server. This is the list of the client's node IDs. This is used for missing segment request and
bootload request messages. The maximum number of clients is limited in the broadcast plugin to 50.

The following command on the OTA server sets the node ID of the OTA client at index 0 to 0x0001:
boot | oader _broadcast _set _target 0 0x0001

You can set up multiple targets with the same command by incrementing the index.

With the next command, you are starting the OTA distribution itself as shown in the following figure.

SensorA/OTA client
2

Sink/OTA server

SensorA/OTA client
1

OTA

OTA

boot | oader _broadcast _di stri bute <size> Oxaa 1

Where <si ze> is the size of the GBL image in bytes and Oxaa is the tag you set up previously on the OTA client and 1 is number of
clients you set up using set -t ar get .

This starts the OTA image distribution process. You should see get segment lines on the OTA server (that is, reading segments from
flash memory) and i nconi ng segnent lines on the OTA client. It should end with i rage distribution conpleted, 0x00 on the
server side and | rage downl oad COVPLETED t ag=0xAA si ze=<si ze> on the client side.

At this point, boot | oader _val i dat e_i mage should return with val i d on the client(s) as well.

Next, you are going to request bootloading as shown in the following figure.

SensnrMSTA client Sink/OTA server SensnrM?TA client

Gecko Bootloader Gecko Bpotloader

To do that, execute the following command on the OTA server:

boot | oader _br oadcast _r equest _boot | oad 1000 Oxaa 1

Where 1000 is a timeout in ms and the last two parameters are the same as above for di stri but e.

Rev.0.1 | 14

silabs.com | Building a more connected world.

UG435.06: Bootloading and OTA with Silicon Labs Connect v3.x
Example: OTA Bootloading in a Sensor-Sink Demo

6.5 Bootloading Finished

Both unicast and broadcast bootload request should immediately return with boot | oad request conpl et ed. After the timeout, you
should see the bootloading of the OTA client. After bootloading, the sensor should join again because the network information is stored
in NVM, but this time you should see the differences you set up for the OTA image.

silabs.com | Building a more connected world. Rev. 0.1 | 15

SILCON LABS

Sbou v Progusi =
2 Commsntty & Suppt =

Do you have an
. innovative idea to

- o = v keep the world
il T~ h connected?

| e

= eiiis

Explorn Our Foatured Products
riencly c

Micracontrollers wireless & RF Sensors

Smart.
Connected.
Energy-Friendly.

Products Quality Support and Community
www.silabs.com/products www.silabs.com/quality community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without
further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior
notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance
of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license
to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class Il devices, applications for which FDA premarket approval is
required, or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health,
which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs
products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering
such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such
unauthorized applications.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,
Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-
Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a
registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

®
Silicon Laboratories Inc.

400 West Cesar Chavez
Austin, TX 78701
USA

SILICON LABS http://www.silabs.com

	1. Introduction
	2. The Gecko Bootloader
	3. Setting Up a Silicon Labs Connect Application for Bootloading
	4. Using the Standalone Bootloader with a System on Chip Application
	5. Using the Application Bootloader for OTA
	5.1 Broadcast or Unicast
	5.2 OTA Components
	5.3 Theory of Operation: Broadcast OTA
	5.4 Theory of Operation: Unicast OTA
	5.5 Remote Bootload Request

	6. Example: OTA Bootloading in a Sensor-Sink Demo
	6.1 Create Projects
	6.2 Flashing Applications
	6.3 Generating the GBL File
	6.4 Loading the Image to the OTA Server
	6.4.1 Loading to SPI Flash
	6.4.2 Loading Internal Flash
	6.4.3 Preparing the Devices for Bootloading
	6.4.3.1 Preparing the Storage
	6.4.3.2 Preparing the Network

	6.4.4 Unicast OTA
	6.4.4.1 Unicast Download Resume Feature

	6.4.5 Broadcast OTA

	6.5 Bootloading Finished

