

silabs.com | Building a more connected world. Copyright © 2022 by Silicon Laboratories Rev. 0.5

UG472: Bluetooth® Mesh Stack and
Bluetooth® Mesh Configurator User's Guide
for SDK v2.x and Higher

This user guide describes the components, stack and DCD
(Device Composition Data) configuration options for the
Bluetooth Mesh SDK.

KEY POINTS

• Introduction to Simplicity Studio 5 Blue-
tooth Mesh components.

• Modifying the Device Composition Data,
including device information, elements,
and models.

• Setting stack configuration options to
optimize the RAM and persistent stor-
age usage.

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher

silabs.com | Building a more connected world. Rev. 0.5 | 1

Table of Contents
1 Introduction... 0

1.1 Terminology .. 0

2 Simplicity Studio 5 and Bluetooth Mesh ... 1

2.1 Bluetooth Mesh Components ... 1

2.2 Bluetooth Mesh Configurator ... 3

2.2.1 Device Information ... 3

2.2.2 Elements ... 4

2.2.3 Models .. 4

2.2.4 SIG-Adopted Model Editor ... 4

2.2.5 Vendor Model Editor .. 7

2.3 Bluetooth Mesh Stack.. 7

2.3.1 Maximum number of Network Keys allowed .. 9

2.3.2 Maximum number of Application Keys allowed ... 9

2.3.3 Maximum number of application bindings allowed ... 10

2.3.4 Maximum number of subscriptions allowed ... 10

2.3.5 Maximum number of provisioned devices allowed ... 10

2.3.6 Replay Protection List size ... 10

2.3.7 Maximum number of virtual addresses ... 11

2.3.8 Maximum number of Network Keys allowed for each provisioned device ... 11

2.3.9 Maximum number of Application Keys allowed for each provisioned device ... 11

2.3.10 Maximum number segments allowed for received packets .. 11

2.3.11 Maximum number segments allowed for transmitted packets .. 11

2.3.12 Maximum number of provisioning sessions allowed .. 12

2.3.13 Maximum number of client Ccmmands for the Foundation Model .. 12

2.3.14 Network cache size .. 12

2.3.15 Number of connections to reserve for GATT proxies ... 12

2.3.16 Maximum provisioning bearers ... 12

2.3.17 Maximum number of Friendships allowed ... 13

2.3.18 Maximum size of Total Friend Cache .. 13

2.3.19 Maximum size of cache for a single friendship .. 13

2.3.20 Maximum size of Friendship Subscription List ... 13

2.3.21 GATT TX Queue size ... 13

2.3.22 Access Layer TX Queue Size ... 13

2.3.23 Element sequence number write interval exponent ... 13

2.3.24 Size of RAM cache for Persistent Keys stored within PSA ITS... 14

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher

silabs.com | Building a more connected world. Rev. 0.5 | 2

2.3.25 Maximum number or proxy access control list entries .. 14

2.4 Bluetooth GATT Configurator... 14

3 Bluetooth Mesh SDK and EFR32BG Series 1 and 2 ... 16

3.1.1 Series 1 Support .. 16

3.1.2 Series 2 Support .. 16

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher
 Introduction

silabs.com | Building a more connected world. Rev. 0.5 | 0

1 Introduction

A new way of configuring the Bluetooth Mesh stack, namely through components and the Bluetooth Mesh Configurator tool, was intro-
duced beginning with Bluetooth Mesh SDK 2.0 and Simplicity Studio 5.

1.1 Terminology

The following table gathers the Bluetooth mesh-specific terms in use in this document. Those terms are defined in the SIG Bluetooth
Mesh Profile specification.

Table 1-1. Terminology

Term Definition
Address The identity of one or more elements in one or more nodes.
Configuration Client A node that implements the Configuration Client model.
Destination The address to which a message is sent.
Device An entity that is capable of being provisioned onto a mesh network.
Element An addressable entity within a device. A device is required to have at least one element.
Message A sequence of octets that is sent from a source to a destination.
Network A group of nodes sharing a common address space.
Node A provisioned device.

Provision
The process of authenticating and providing basic information (including unicast addresses and a
network key) to a device. A device must be provisioned to become a node. Once provisioned, a
node can transmit or receive messages in a mesh network.

Provisioner A node that is capable of adding a device to a mesh network.
Relay A node that receives and then retransmits messages.
Source The address from which a message is sent.
State A value representing a condition of an element that is exposed by an element of a node.
Subnet A group of nodes that can communicate with each other.

https://www.bluetooth.com/specifications/mesh-specifications/
https://www.bluetooth.com/specifications/mesh-specifications/

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher
 Simplicity Studio 5 and Bluetooth Mesh

silabs.com | Building a more connected world. Rev. 0.5 | 1

2 Simplicity Studio 5 and Bluetooth Mesh

A number of new features and architecture changes were introduced beginning with Bluetooth Mesh SDK 2.0 and Simplicity Studio 5.
The features supported are backward compatible with applications built with the Bluetooth Mesh SDK v1.x, although the API in use is
different. Projects generated with the Bluetooth Mesh SDK version 2.0 and higher can be configured via the three following input param-
eter tools:
• Project file, using the slcp extension (silicon labs component project) (For the Mesh components)
• Bluetooth mesh configurator (for DCD configuration)
• Bluetooth GATT configurator (for Mesh services)

Figure 2-1. Bluetooth Configuration Overview

Note: Unlike versions 1.x and lower, the current version of the Bluetooth Mesh SDK does not have a Generate control. Project files are
generated and updated as you make changes and save the updates in the Component Configurator.

2.1 Bluetooth Mesh Components

Upon creation of a Bluetooth Mesh project in Simplicity Studio 5, three tabs open automatically:
• The GATT Configurator (gatt_configuration.btconf)
• The slcp file or Project Configurator (<projectname>.slcp
• The Bluetooth Mesh Configurator (dcd_config.btmeshconf). If the example has documentation, the project opens on a readme tab.

Figure 2-2. Bluetooth Mesh Configuration Tools

The GATT Configurator is the same for both Bluetooth and Bluetooth mesh projects. UG438: GATT Configurator User’s Guide for
Bluetooth SDK v3.x describes how to configure the GATT database.

The Project Configurator and associated component editor allows you to install/uninstall and configure components.

Bluetooth Mesh components are organized in five categories:
• Features
• Models
• Service
• Stack Classes
• Bluetooth Mesh Stack

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher
 Simplicity Studio 5 and Bluetooth Mesh

silabs.com | Building a more connected world. Rev. 0.5 | 2

Figure 2-3. Project Configurator, Software Components Tab

The components in the Features group correspond to the Features field in the Device Composition Data Page 0. You can enable or
disable a specific feature by installing or uninstalling the corresponding component.

The models components allow you to enable or disable a model API. If a model is needed in your project, make sure to install the
corresponding component and configure it as needed.

The Service components provides a set of functionalities of possible use in project development, for example, factory reset and event
logging.

Bluetooth Mesh APIs are organized into several categories by functionalities. You can choose what classes are required by the use case
and initialize them. Uninitialized classes will not be built into the application, thereby reducing the flash and RAM usage.

The Bluetooth Mesh Stack component includes options that allow you to optimize memory usage. Several memory configuration options
for a Mesh project are available. Some only affect the RAM consumption, and others affect both RAM and the persistent storage. Because
the space available in RAM and persistent storage is limited, set the configuration option values in a suitable manner.

The Bluetooth Mesh Configurator provides access to Device Composition Data (DCD). This contains information about a Bluetooth
mesh node, the elements it includes, and the supported models. DCD exposes the node information to a configuration client so that it
knows the potential functionalities the node supports and, based on that, can configure the node.

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher
 Simplicity Studio 5 and Bluetooth Mesh

silabs.com | Building a more connected world. Rev. 0.5 | 3

Figure 2-4. Bluetooth Mesh Configurator

2.2 Bluetooth Mesh Configurator

To access Device Composition Data, open the Bluetooth Mesh Configurator on the dcd_config.btmeshconf tab. The Device Composition
data is presented in three areas: device information, elements, and models.

2.2.1 Device Information

The device information card contains four fields, shown in the following figure.

Figure 2-5. Device Information Card

The Company field is linked to the Company ID field, changing one will automatically change the other as a result. The meaning of each
field is shown in the following table.

Table 2-1. Device Information Fields

Field Name Notes
Company The company name in the list containing all the registered companies in Bluetooth SIG
Company ID 16-bit company identifier assigned by the Bluetooth SIG
Product ID 16-bit vendor-assigned product identifier, vendor-specific
Version Number 16-bit vendor-assigned product version identifier, vendor-specific

A list of companies and their unique identifier can be found on the Bluetooth SIG site.

https://www.bluetooth.com/specifications/assigned-numbers/company-Identifiers

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher
 Simplicity Studio 5 and Bluetooth Mesh

silabs.com | Building a more connected world. Rev. 0.5 | 4

2.2.2 Elements

An element is an addressable entity within a node. Each node can have one or more elements, the first called the primary element and
the others called secondary elements. Each element is assigned a unicast address during provisioning, so that it can be used to identify
which node is transmitting or receiving a message. The primary element is addressed using the first unicast address assigned to the
node, and the secondary elements are addressed using the subsequent addresses. Both primary and secondary elements have a dedi-
cated card, such as that shown in the following figure, through which they can be configured. Click the green plus symbol to add an
element or select an element and click the red X symbol to remove it.

Figure 2-6. Primary Element Card

2.2.3 Models

A model defines the basic functionality of a node. A node may include multiple models. A model defines the required states, the messages
that act upon those states, and any associated behaviors.

Models may be defined and adopted by the Bluetooth SIG and may also be defined by vendors. Models defined by the Bluetooth SIG
are known as SIG-adopted models, and models defined by vendors are known as vendor models. SIG-adopted models are identified by
a 16-bit model identifier and vendor models are identified by a 16-bit vendor identifier and a 16-bit model identifier.

The Bluetooth Mesh Configurator supports configuring both SIG-adopted models and vendor models through separate editors.

2.2.4 SIG-Adopted Model Editor

Add SIG Models via Components

If you are using the provided model components that automatically bring in the source/header files, libraries, and configurations to the
project, and also contribute the model to the DCD, you cannot edit or delete the model from the DCD manually. The model is greyed out,

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher
 Simplicity Studio 5 and Bluetooth Mesh

silabs.com | Building a more connected world. Rev. 0.5 | 5

as shown in the following figure. In this case, all the model implementations will be generated to the project. You can modify the callbacks
to adjust the application to your use case.

Figure 2-7. SIG-Adopted Model Editor with Components

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher
 Simplicity Studio 5 and Bluetooth Mesh

silabs.com | Building a more connected world. Rev. 0.5 | 6

Edit SIG Models Manually

The DCD editor displays the information list of available models in SSv5 on the left side. Because models are added and configured as
components, they are not editable in the Mesh configurator. To build the DCD from a clean slate, for example when adding specific
models to an element, uninstall all model components manually and then edit the DCD.

To delete a model, select it and click the red X symbol. To add a SIG-adopted model, drag and drop the model from the left model pool
to the SIG Models table in the correct element. A list of all the SIG-adopted models is displayed, and you can choose the one that is
needed. Note that, although all the SIG-adopted models are listed, not all of them are currently supported by the Bluetooth Mesh SDK.
For the information on the supported models, see the SDK release notes.

Figure 2-8. SIG-Adopted Model Editor

Due to the extension mechanism of models mentioned above, attention must be paid when adding models to your project:
1. When adding a model that is not a root model, in other words an extended model, all the models it extends from should also be

added. The Bluetooth Mesh Model Specification has the detailed definition of the models’ relationships. For example, to add a Light
Lightness Server model, the Generic Power On/Off Server model and the Generic Level Server model must also be present in the
settings, because the Light Lightness Server model is extended from them.

2. One element can only have one instance of a model. For example, if both model A and Model B are extended from Model C, you
cannot add them both to a single element because it would require two Model C instances. The appropriate way to achieve this is to
have two elements, and put model A and model C in one element and model B and model C in the other element. For example, the
light example in the Bluetooth mesh SDK has two elements in order to have two Generic Level Server model instances.

In addition to the above points, follow the points below when editing the model setting of a node.
1. The configuration server model must be supported by a primary element and must not be supported by any secondary elements.
2. To develop a provisioner, add at least the configuration client model in your project, and it should be in the primary element.
3. The health server model must be supported by a primary element and may be supported by any secondary elements.
4. If the health client model is supported, it must be supported by a primary element and may be supported by any secondary elements.

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher
 Simplicity Studio 5 and Bluetooth Mesh

silabs.com | Building a more connected world. Rev. 0.5 | 7

2.2.5 Vendor Model Editor

The Vendor models give you more flexibility when developing products not covered by the SIG-adopted models. Vendors can define their
own specification in these models, including states, messages, and the associated behaviors. The vendor model editor is shown in the
following figure. The ID field contains the 32-bit vendor identifier and model identifier. The two least significant bytes of the ID are the
vendor ID and the two most significant bytes are the model ID. In the following figure, 0x02FF is the vendor ID for Silicon Labs, and
0x0021 and 0x0022 is the model ID.

Figure 2-9. Vendor Model Editor

Click the plus symbol to add a vendor model, or select a model and click the red X symbol to remove it.

2.3 Bluetooth Mesh Stack

The Bluetooth mesh SDK provides several SRAM and internal flash consumption optimization options. Memory should be configured to
allocate the appropriate amount of resource needed, so the space left for application usage is optimized. The stack memory configuration
can be tuned by configuring the Bluetooth Mesh Stack component.

The following figure shows the available configuration options:

Figure 2-10. Bluetooth Mesh Stack Configuration

All configuration options affect RAM consumption. The stack allocates various structures at startup based on the values entered and uses
the allocated memory during operation.

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher
 Simplicity Studio 5 and Bluetooth Mesh

silabs.com | Building a more connected world. Rev. 0.5 | 8

Some configuration options also affect consumption of persistent storage in internal flash. The stack allocates space in persistent storage
based on the configuration option values at start up. The persistent storage implementation used by the Bluetooth Mesh stack is either
NVM3 (recommended, default on series 2) or PS Store. For more details, see AN1135: Using Third Generation Non-Volatile Memory
(NVM3) Data Storage.

The following table summarizes the configuration options:

Table 2-2. Summary of Configuration Options

Configuration Option Description
Stored
Persist
ently

Notes

Maximum number of
Network Keys allowed

The maximum number of network keys that can
be stored (see 2.2.1 Network and subnets and
2.3.9 Security of Mesh Profile 1.0.1).

Yes No larger than 7.

Maximum number of
Application Keys allowed

The maximum number of application keys that
can be stored (see 2.2.1 Network and subnets
and 2.3.9 Security of Mesh Profile 1.0.1).

Yes No larger than 8.

Maximum number of
application bindings
allowed

The maximum number of application keys that
can be bound to a model. Yes

No larger than the smaller value of
‘Maximum number of Application Keys
allowed’ and 255.

Maximum number of
subscriptions allowed

The maximum number of addresses that the
device can subscribe to (see 3.7.6.2 Subscribe of
Mesh Profile 1.0.1).

Yes No larger than 255.

Maximum number of
provisioned devices
allowed

The maximum number of devices that can be
provisioned by this device. Yes

Only applicable if the device is in
provisioner role, no larger than 512. Set
to 0 for node role.

Replay Protection List
size

The replay protection list size (see 3.8.8 Message
replay protection of Mesh Profile 1.0.1). Yes

Set to equal or greater than the
expected number of elements the device
will communicate with. Otherwise, the
node cannot receive a message from
any new node if the list is already full.
Must be no larger than 4096 and
divisible by 16.

Maximum number of
virtual addresses

The maximum number of virtual addresses the
models on the device can publish or subscribe to
(see 2.3.5 Addresses and 3.4.2.3 Virtual address
of Mesh Profile 1.0.1).

Yes Set to 0 if virtual address not used.

Maximum number of
Network Keys allowed for
each Provisioned Device

The maximum number of network keys on the
peers provisioned by this device. Yes Only applicable if the device is in

provisioner role.

Maximum number of
Application Keys allowed
for each Provisioned
Device

The maximum number of application keys on the
peers provisioned by this device Yes Only applicable if the device is in

provisioner role.

Maximum number of
simultaneous segmented
receptions

The maximum number of segmented messages
that can be received in parallel (see 3.5.3
Segmentation and reassembly of Mesh Profile
1.0.1).

No Set to a low number if little segmentation
is used.

Maximum number of
simultaneous segmented
transmissions

The maximum number of segmented messages
that can be sent in parallel (see 3.5.3
Segmentation and reassembly of Mesh Profile
1.0.1).

No Set to a low number if little reassembly is
used.

Maximum number of
provisioning sessions
allowed

The maximum number of simultaneous
provisioning sessions the device supports. No

Set to 1 if the device is in node role. For
the provisioner role, set to greater than 1
if provisioning multiple devices
simultaneously.

https://www.silabs.com/documents/public/application-notes/an1135-using-third-generation-nonvolatile-memory.pdf
https://www.silabs.com/documents/public/application-notes/an1135-using-third-generation-nonvolatile-memory.pdf

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher
 Simplicity Studio 5 and Bluetooth Mesh

silabs.com | Building a more connected world. Rev. 0.5 | 9

Configuration Option Description
Stored
Persist
ently

Notes

Maximum number of
Client Commands for the
Foundation Model

The maximum number of commands that
Configuration and Health client can send in
parallel (see 4 Foundation models of Mesh Profile
1.0.1).

No Only applicable if the device is in
provisioner role.

Network Cache size The network message cache size (see 3.4.6.5
Network Message Cache of Mesh Profile 1.0.1). No Network density-dependent.

Number of connections to
reserve for GATT Proxies

The maximum number of GATT connections for
PB-GATT and GATT bearers. No Can be 0 if PB-GATT and GATT bearers

are not supported.
Maximum number of
provisioning bearers
allowed

Number of provisioning bearers (see 5.2
Provisioning bearer layer of Mesh Profile 1.0.1). No

Number of supported provisioning
bearers, PB-ADV, PB-GATT or both. Not
greater than 2.

Maximum number of
Friendships allowed

The maximum number of friendships that can be
established (see 2.3.10 Friendship of Mesh
Profile 1.0.1).

No Only applicable for friend node.

Maximum size of Total
Friend Cache

The maximum number of messages a friend node
can cache. (see 3.5.5 Friend Queue of Mesh
Profile 1.0.1).

No Only applicable for friend node.

Maximum size of Cache
for a single Friendship

The maximum number of messages a friend node
can cache for a single low-power node (see 3.5.5
Friend Queue of Mesh Profile 1.0.1).

No Only applicable for friend node.

Maximum size of
Friendship Subscription
List

The maximum number of addresses that can be
stored in the Friend Subscription List. No Only applicable for friend node.

GATT TX Queue size Queue size for messages over GATT bearer. No Connection interval-dependent.

Access Layer TX Queue
Size

The maximum number of messages that can be
queued in the Access layer (see 3.7.4.1
Transmitting an access message of Mesh Profile
1.0.1).

No

Element sequence
number write interval
exponent

The latest Network PDU sequence numbers are
stored into flash from time to time as defined by
this setting for reset or power off situations.

 From 0 to 23, default 16.

Size of RAM cache for
persistent keys stored
within PSA ITS

PSA ITS (internal trusted storage) Mesh
encryption keys RAM cache to increase runtime
performance.

 From 0 to 544, default 16.

Maximum number of
proxy access control list
entries

Define the number of proxy access control list
entries. Default 8

To download Mesh Profile 1.0.1, go to https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457092.

2.3.1 Maximum number of Network Keys allowed

The value determines the maximum number of network keys that can be stored in the device. For the Bluetooth Mesh SDK 1.7.x, the
maximum is 7, which means a device can support no more than 7 subnets. A node should stay in the network(s) it was in after a power
cycle, so the network keys and the related information should be stored persistently. Because of the key refresh procedure requirements,
each network key will hold 2 values – the current network key and the old network key.

2.3.2 Maximum number of Application Keys allowed

The value determines the maximum number of application keys that can be stored in the device. For the Bluetooth Mesh SDK 1.7.x, the
maximum number is 8, which means a device can support no more than 8 application keys no matter which network keys they are bound
to. The application keys and the related information should be stored persistently. Because of key refresh procedure requirements, each
application key will hold 2 values – the current application key and the old application key.

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457092

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher
 Simplicity Studio 5 and Bluetooth Mesh

silabs.com | Building a more connected world. Rev. 0.5 | 10

The maximum application key number should be set close to the expected number of application keys that will be used in a network.

2.3.3 Maximum number of application bindings allowed

If a message is successfully decrypted by the upper transport layer with an application key, the decrypted message and the application
key information will be delivered to the access layer. The access layer will check if the message is used by the model on the node, and
then check if the application key is bound to the model. This value decides the maximum number of application keys that can be bound
to a single model. The binding information will be stored persistently. Because the bindings are model-specific, the total amount of flash
usage is multiplied by the number of models on the node.

The number of bindings should not be set larger than the number of application keys that can be stored on the device. It can be set to a
smaller number if it is expected that each model will be bound to only one or a few keys.

2.3.4 Maximum number of subscriptions allowed

Each model can have a separate or a shared subscription list, if it supports subscription. This value determines the subscription list size,
in other words, how many addresses can be subscribed by a model. All the subscription lists will be stored persistently, because the
extended models share the same subscription list with their root model. The real amount of space depends on what models are on the
device.

The number of subscriptions should be set to the maximum expected number of subscriptions to be made to each model, or slightly
larger.

2.3.5 Maximum number of provisioned devices allowed

This setting is applicable only when the device is in the provisioner role. The value determines the maximum number of devices the
provisioner can provision to the network. The best number for this setting should be the maximum expected network size. For Bluetooth
Mesh SDK 1.7.x, the maximum value is 512, which means the maximum network size supported by the stack is 512 nodes.

Because a node cannot provision any devices into the network and doesn’t have the device database, set to 0 for devices in node role.

2.3.6 Replay Protection List size

A message sent by a legitimate originating element can be passively received by an attacker and then replayed later without modification.
This is called a replay attack. Because the originating element has encrypted and authenticated the message using the correct keys, the
receiver cannot determine whether it is under a replay attack solely by performing the message integrity checks.

To increase protection against replay attacks, each element increases the sequence number for each new message that it sends, and
the receivers keep track of the largest sequence number they have received from each originating element. This bookkeeping is called
the replay protection list. If a valid message has been received from an originating element with a specific sequence number, any future
messages from the same originating element containing sequence numbers less than or equal to the last valid sequence number are
very likely replayed messages and should be discarded. Therefore, messages are delivered to the access layer in sequence number
order.

Due to security concerns, entries in the replay protection list cannot be reused, which means there is no way to delete or clear an entry if
it has already been used. No Least Recently Used algorithm is used in this list because it brings potential security risks. It is explicitly
specified in the Mesh Profile 1.0.1 - If a node does not have enough resources to perform replay protection for a given source address,
then the node shall discard the message immediately upon reception.

Furthermore, because nodes could be removed from the network and new devices will be added to the network, the replay protection list
should be set to the maximum number of elements the device will communicate with, which could be larger than the maximum network
size in this case. For example, assume the network size is 5, contains devices 1-5, and they have already communicated with each other.
The replay protection list on device 1 should contains device 2-5, which occupies 4 entries. Then, if devices 2-5 are removed from the
network and devices 6-9 are added to the network, device 1 will need 4 more entries in the replay protection list to be able to communicate
with devices 6-9. In this scenario, device 1 needs 8 replay protection entries, which is larger than the network size of 5.

The replay protection list is stored persistently. The number of replay protection list entries should be set to the number of peers a node
is expected to communicate with, rounded up to the nearest number divisible by 16.

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher
 Simplicity Studio 5 and Bluetooth Mesh

silabs.com | Building a more connected world. Rev. 0.5 | 11

2.3.7 Maximum number of virtual addresses

This setting determines the maximum number of virtual addresses the models on the device can publish or subscribe to. A virtual address
is a multicast address and can represent multiple elements on one or more nodes. Each virtual address logically represents a Label
UUID, which is a 128-bit value that does not have to be managed centrally. Each message sent to a Label UUID includes a message
integrity check value containing the full Label UUID that is used to authenticate the message. To reduce the overhead of checking every
known Label UUID, a hash of the Label UUID is used. Although the virtual address is 2 bytes, the 128-bit label UUID value should be
stored persistently because the full data needs to be used for decrypting the messages sent to virtual addresses.

The number of virtual addresses should be set to as small a number as possible, or zero if it is expected that virtual addresses are not
used. The current Mesh Model specification does not require the use of virtual addresses, so at the moment they are used only in vendor-
specific contexts.

2.3.8 Maximum number of Network Keys allowed for each provisioned device

This setting is only used during the key refresh procedure. The provisioner should persistently store the states of network keys of the
nodes participating in the key refresh procedure. This value determines the maximum number of network keys that can be included in
the key refresh procedure, in other words, how many network keys can be refreshed one time.

This only applies to a provisioner. Set to 1 if you only want to refresh one network key at a time, or a higher value if the use case needs
to refresh more than one network key at once. Set to 0 for devices in node role.

2.3.9 Maximum number of Application Keys allowed for each provisioned device

This setting is only used during the key refresh procedure. The provisioner should persistently store the states of application keys of the
nodes participating in the key refresh procedure. This value determines the maximum number of application keys that can be included in
the key refresh procedure, in other words, how many application keys can be refreshed one time.

This only applies to a provisioner. Set to 1 if you only want to refresh one application key at a time, or a higher value if the use case needs
to refresh more than one application key at once. Set to 0 for devices in node role.

2.3.10 Maximum number segments allowed for received packets

Due to the packet size limitation in Bluetooth Mesh, a message may be sent unsegmented or segmented, depending on the message
payload size. For the transport layer to receive the segmented message, it has to cache the received segments before all the segments
are received successfully. This setting determines the maximum segmented messages that can be received concurrently. Note, this does
not define how many segmented packets in a message, but how many segmented messages no matter how many packets the message
is segmented into. For example, if the setting is 3, the node is able to receive segmented message A, B, and C simultaneously, no matter
how messages A, B, and C are segmented into A1, B1, C1 … An, Bn, Cn. The maximum number that a message can be segmented into
is defined in the Mesh Profile specification.

A device with standard models rarely receives segmented messages (encryption key deployment being one example) so a low number
can be used if none of the vendor models need segmentation.

2.3.11 Maximum number segments allowed for transmitted packets

Due to the packet size limitation in Bluetooth Mesh, a message may be sent unsegmented or segmented, depending on the message
payload size. For the transport layer to send the segmented message, it has to cache the whole message before all the segments are
sent and acknowledged successfully. This setting determines the maximum segmented messages that can be sent concurrently. Note,
this does not define how many segmented packets are in a message, but how many segmented messages no matter how many packets
the message is segmented into. For example, if the setting is 3, the node is able to send segmented message A, B, and C simultaneously,
no matter how messages A, B, and C are segmented into A1, B1, C1 … An, Bn, Cn. The maximum number that a message can be
segmented into is defined in the Mesh Profile specification.

A device with standard models rarely sends segmented messages (encryption key deployment being one example) so a low number can
be used if none of the vendor models need segmentation.

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher
 Simplicity Studio 5 and Bluetooth Mesh

silabs.com | Building a more connected world. Rev. 0.5 | 12

2.3.12 Maximum number of provisioning sessions allowed

Provisioning is session-based. A provisioner does not necessarily need to provision the devices serially, but instead can provision the
devices in parallel. This setting determines the maximum number of provisioning sessions that can happen concurrently. For example, in
an ideal scenario, if the value is 1 and each provisioning takes 3 seconds, then provisioning 100 devices takes 300 seconds. If you set
this value to 5, then it takes 60 seconds in total to provision all 100 nodes. Although in practice the time will be affected by packet collision,
it should still be much less than 300 seconds.

This does not need to be over 1 for devices in node role because a device cannot be provisioned by multiple provisioners at the same
time. It may be over 1 for a provisioner that provisions devices concurrently and it significantly reduces the time for provisioning a large
network.

2.3.13 Maximum number of client Ccmmands for the Foundation Model

After provisioning a device into a network, the first step is probably to configure the node because an unconfigured node is not functional.
The configuration starts by the configuration client model sending a command to the configuration server on the node, followed by a
reverse status message if applicable. The current Mesh Profile 1.0.1 specification only defines 2 foundation client models – configuration
client model and heath client model. This setting determines how many commands can be sent by the foundation client models concur-
rently before the status message is received. For example, in an ideal scenario, if the value is 1 and the configuration to add an application
key to a node takes 3 seconds, then adding the application key to 100 devices takes 300 seconds. If you set this value to 5, then it takes
60 seconds in total to add the application key to all 100 nodes. Although in practice the time will be affected by packet collision, it should
still be much less than 300 seconds.

This is not applicable and should be set to 0 for devices that do not have configuration client or health client models. It may be over 1 for
a provisioner that configures devices concurrently and it significantly reduces the time for configuring a large network.

2.3.14 Network cache size

The network message cache is used to reduce unnecessary security checks and excessive relaying. It is a list of all the information about
recently seen network packets. When a network PDU is received and already in the network message cache, for example because of
network retransmission, it will be discarded immediately without processing. If a received network PDU is not in the network message
cache, its information should be added to the network message cache and be further processed.

Note, this network message cache is different from the replay protection list. It is not for security. When the Network Message Cache is
full and an incoming new Network PDU needs to be cached, an incoming new Network PDU should replace the oldest Network PDU that
is already in the Network Message Cache.

The suitable value is dependent on expected network density, node configuration, and traffic frequency. For example, if network layer
repetition is configured on, with an interval that allows multiple messages to be injected to the network by other nodes during the interval,
the cache should be large enough to handle this and not flush the previous Tx before the repetition.

2.3.15 Number of connections to reserve for GATT proxies

This setting determines the maximum number of GATT connections the device can establish concurrently. For devices in an unprovi-
sioned state, the GATT connections can be used for establishing the PB-GATT bearer so that provisioning can be done over GATT. For
devices in a provisioned state and supporting Proxy, the GATT connections can be used for establishing the proxy connections so that
all the communication can go over GATT bearers.

If devices do not support the Proxy feature or provisioning over a GATT connection, it can be set to 0. The number of proxy filters is
limited to 16 per connection.

2.3.16 Maximum provisioning bearers

Two provisioning bearers are defined in the Mesh Profile 1.0.1 – PB-ADV and PB-GATT. This setting should be consistent with the
number of provisioning bearers supported by the device. An unprovisioned device may support PB-ADV and may support PB-GATT.
Supporting both PB-ADV and PB-GATT is strongly recommended. A Provisioner must support at least one of PB-ADV or PB-GATT.
Supporting PB-ADV is strongly recommended.

The value should not be set to larger than 2 as only 2 available provisioning bearers are defined in Mesh Profile 1.0.1. It is also not
recommended to set it to 0, as provisioning is mandatory for devices to be added to a network.

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher
 Simplicity Studio 5 and Bluetooth Mesh

silabs.com | Building a more connected world. Rev. 0.5 | 13

2.3.17 Maximum number of Friendships allowed

In principle, all the nodes in the Bluetooth Mesh network should listen for incoming packets at the highest possible duty cycle to avoid
losing packets. But a battery-powered device must sleep to save power, so it must be associated with an always-on device that stores
and relays messages on its behalf. The relationship between the always-on node and the battery-powered nodes is friendship.

This setting is only applicable for nodes that support the friend feature. It determines the maximum number of friendships it can establish,
in other words, the maximum number of low-power nodes it can establish the friendship with concurrently. Set to 0 if the node does not
support the friend feature.

2.3.18 Maximum size of Total Friend Cache

As mentioned in Section 2.3.17 Maximum number of Friendships allowed, a low-power node needs to establish a friendship with a
neighboring friend node. The friend node will cache the message targeted to the low-power node and the low-power node can periodically
poll the friend node for messages. All the cached messages are stored in the Friend Queue. This setting determines the Friend Queue
size, that is, how many messages in total it can store for all the low-power nodes it established friendship with. It is only applicable for
nodes which support the friend feature. Set to 0 if the node does not support friend feature.

2.3.19 Maximum size of cache for a single friendship

The Maximum size of Total Friend Cache setting (section 2.3.17 Maximum number of Friendships allowed) determines the maximum
number of messages that can be stored in the Friend Queue in total. This setting determines the maximum number of messages that can
be stored in the Friend Queue for a single Friendship. Because of the difference among use cases, the requirement for the number of
messages to be stored could vary from one low-power node to another. This setting and the Maximum size of Total Friend Cache
setting make the allocation of the Friend Queue dynamic when establishing friendships, and the use of the Friend Queue more efficient.
This setting is only applicable for nodes that support the friend feature and must be set equal to or less than the Maximum size of Total
Friend Cache setting. Set to 0 if the node does not support the friend feature.

2.3.20 Maximum size of Friendship Subscription List

As mentioned in section 2.3.17 Maximum number of Friendships allowed, the friend node needs to cache the message targeted to the
low-power node that it established the friendship with. The low-power node would like to receive two types of messages. One is the
message with the destination address to be the unicast address(s) on the low-power node. The other is the addresses that the low-power
node subscribes to. In order to cache the messages designated for the addresses that the low-power node subscribes to, the friend node
needs to maintain a list of the low-power node’s subscription addresses. A low-power node could update the subscription list by adding
addresses to the list or removing addresses from the list. This setting determines the maximum addresses that can be stored in the
subscription list on the friend node for a single low-power node.

2.3.21 GATT TX Queue size

This setting determines the number of PDUs that may be pending transmit on the GATT bearer. The value may be small for a node that
is only configured over a GATT proxy bearer (default is 4). It may need to be larger for a node that acts as a GATT proxy between the
network and a legacy device, and where the connection interval for the GATT connection is long.

2.3.22 Access Layer TX Queue Size

As defined in 3.7.4.1 Transmitting an access message of Mesh Profile 1.0.1, the message in response to a received message should be
sent after a random delay. Those messages need to be queued in the stack waiting for the timing to be sent. This setting determines the
maximum number of access layer messages that can be queued, in other words, how many replies can be queued for sending concur-
rently. For nodes that do not have server models, this value can be set to a low value as messages will only be cached during the
configuration phase. For server model nodes, this value should be set according to the requirements of the actual use case.

2.3.23 Element sequence number write interval exponent

Each network PDU originating from a device must be sent with an increasing sequence number. To maintain this when the device is reset
or powered off, the latest sequence numbers are stored in flash with a frequency defined by this setting. The setting defines the sequence
number writing interval as a power of two exponent. For example, a value of 10 would mean 1024 (2 to the 10th power). To avoid

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457092

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher
 Simplicity Studio 5 and Bluetooth Mesh

silabs.com | Building a more connected world. Rev. 0.5 | 14

excessive flash wear, the interval should be relatively high on a device that generates a lot of traffic, and it can be set relatively low on a
device that generates little traffic. Range from 0 to 23, the default is 16.

2.3.24 Size of RAM cache for Persistent Keys stored within PSA ITS

When PSA internal trusted storage (ITS) is used to store the Mesh encryption keys, a RAM cache should be set up to increase runtime
performance. The size of the cache should be set according to the expected use of application and device keys. For a node, it can be set
to the number of application keys times two (to accommodate both key variants during a key refresh); for a Provisioner, it should be set
to the number of application keys times two (to accommodate both key variants during a key refresh) plus a fraction of the expected
number of device keys that will be stored. For devices that do not use PSA ITS, the setting is ignored. Range from 0 to 544, the default
is 16.

2.3.25 Maximum number or proxy access control list entries

Define the number of proxy access control list entries. The default is 8.

2.4 Bluetooth GATT Configurator

The Bluetooth Mesh technology is primarily based on BLE advertisements that use a specific Mesh Message AD (Advertising Data) type.
Some nodes, though, might not be able to advertise using the Mesh Message AD type, and instead require a GATT connection to send
and receive network packets, provisioning data and so on.

The Bluetooth Mesh specification defines two GATT services dedicated to mesh networks for good operation in a connected context:
• The Mesh Provisioning service (0x1827)
• The Mesh Proxy service (0x1828)

A device may support the Mesh Provisioning Service or the Mesh Proxy Service or both. If both are supported, only one of these services
should be exposed in the GATT database at a time. For more details on those services, refer to the Bluetooth Mesh profile specification
(section 7).

In the current Silicon Labs’ Bluetooth Mesh SDK, both services are present in the GATT database by default when creating a project.

The services have their capabilities disabled by default because they are Bluetooth Mesh-specific.

In certain cases, typically when provisioning through a gateway running a third party or open source stack like BlueZ or Zephyr OS, it is
necessary to have the services advertised. This simply indicates to the provisioner that the Mesh services are supported by the node.

Note that, by default, when working with the current Bluetooth Mesh SDK, this is not necessary.

https://www.bluetooth.com/specifications/mesh-specifications/
https://www.bluetooth.com/specifications/mesh-specifications/

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher
 Simplicity Studio 5 and Bluetooth Mesh

silabs.com | Building a more connected world. Rev. 0.5 | 15

Figure 2-11. Bluetooth GATT Configurator

Enabling and disabling service advertisement can be done through the service xml definition file in your project:

Figure 2-12. Editing the xml Service Parameter File

 UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK v2.x and Higher
 Bluetooth Mesh SDK and EFR32BG Series 1 and 2

silabs.com | Building a more connected world. Rev. 0.5 | 16

3 Bluetooth Mesh SDK and EFR32BG Series 1 and 2

The Bluetooth Mesh SDK v2.0 and higher supports both EFR32BG series 1 and series 2 products. Some products may not support all
features.

3.1.1 Series 1 Support

Only EFR32xG13 and EFR32xG12 products support the Bluetooth Mesh stack.

3.1.2 Series 2 Support

Bluetooth Mesh is fully supported by EFR32xG21 and EFR32xG24 products. Due to memory considerations, EFR32xG22 chips have
limited support for the Bluetooth Mesh stack (LPN and Proxy features available only).

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1 Introduction
	1.1 Terminology

	2 Simplicity Studio 5 and Bluetooth Mesh
	2.1 Bluetooth Mesh Components
	2.2 Bluetooth Mesh Configurator
	2.2.1 Device Information
	2.2.2 Elements
	2.2.3 Models
	2.2.4 SIG-Adopted Model Editor
	2.2.5 Vendor Model Editor

	2.3 Bluetooth Mesh Stack
	2.3.1 Maximum number of Network Keys allowed
	2.3.2 Maximum number of Application Keys allowed
	2.3.3 Maximum number of application bindings allowed
	2.3.4 Maximum number of subscriptions allowed
	2.3.5 Maximum number of provisioned devices allowed
	2.3.6 Replay Protection List size
	2.3.7 Maximum number of virtual addresses
	2.3.8 Maximum number of Network Keys allowed for each provisioned device
	2.3.9 Maximum number of Application Keys allowed for each provisioned device
	2.3.10 Maximum number segments allowed for received packets
	2.3.11 Maximum number segments allowed for transmitted packets
	2.3.12 Maximum number of provisioning sessions allowed
	2.3.13 Maximum number of client Ccmmands for the Foundation Model
	2.3.14 Network cache size
	2.3.15 Number of connections to reserve for GATT proxies
	2.3.16 Maximum provisioning bearers
	2.3.17 Maximum number of Friendships allowed
	2.3.18 Maximum size of Total Friend Cache
	2.3.19 Maximum size of cache for a single friendship
	2.3.20 Maximum size of Friendship Subscription List
	2.3.21 GATT TX Queue size
	2.3.22 Access Layer TX Queue Size
	2.3.23 Element sequence number write interval exponent
	2.3.24 Size of RAM cache for Persistent Keys stored within PSA ITS
	2.3.25 Maximum number or proxy access control list entries

	2.4 Bluetooth GATT Configurator

	3 Bluetooth Mesh SDK and EFR32BG Series 1 and 2
	3.1.1 Series 1 Support
	3.1.2 Series 2 Support

